Skip to main content

Ring-Cleavage Dioxygenases

  • Chapter
Pseudomonas

Abstract

Pseudomonads have an exceptional ability to utilize aromatic compounds as sole source of energy and carbon. This capability is critical to maintaining the global carbon cycle. Aromatic compounds are planar, fully conjugated, ring-shaped molecules possessing (4n + 2)π electrons where n is a nonnegative integer (Hückel’s rule)93. Formed by a variety of biogeochemical processes, these compounds are widely distributed in nature, and range in size from low-molecular-mass compounds, such as phenols, to biopolymers, such as lignin. Indeed, lignin is the second most abundant polymer in nature after cellulose2. Aromatic compounds are exceptionally stable due to the delocalization of their π orbitals (resonance structure). This property has contributed to the wide spread production and usage of natural and non-natural aromatic compounds for a variety of industrial applications, as well as the distribution of stable, nonnatural compounds in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R.H., Huang, C.-M., Higson, F.K., Brenner, V., and Focht, D.D., 1992, Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl. Environ. Microbiol., 58:647–654.

    PubMed  CAS  Google Scholar 

  2. Alder, E., 1977, Lignin chemistry—past, present and future. Wood Sci. Technol., 11:169–218.

    Article  Google Scholar 

  3. Anand, R., Dorrestein, P.C., Kinsland, C., Begley, T.P., and Ealick, S.E., 2002, Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 Å resolution. Biochemistry, 41:7659–7669.

    Article  PubMed  CAS  Google Scholar 

  4. Arciero, D.M. and Lipscomb, J.D., 1986, Binding of 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase-nitrosyl complex. Evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J. Biol. Chem., 261:2170–2178.

    PubMed  CAS  Google Scholar 

  5. Arciero, D.M., Orville, A.M., and Lipscomb, J.D., 1985, [17O]Water and nitric oxide binding by protocatechuate 4,5-dioxygenase and catechol 2,3-dioxygenase. Evidence for binding of exogenous ligands to the active site Fe2+ of extradiol dioxygenases. J. Biol. Chem., 260:14035–14044.

    PubMed  CAS  Google Scholar 

  6. Armengaud, I, Timmis, K.N., and Wittich, R.M., 1999, A functional 4-hydroxysalicylate/hydrox-yquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J. Bacteriol., 181:3452–3461.

    PubMed  CAS  Google Scholar 

  7. Armstrong, R.N., 2000, Mechanistic diversity in a metalloenzyme superfamily. Biochemistry, 39:13625–13632.

    Article  PubMed  CAS  Google Scholar 

  8. Arras, T., Schirawski, J., and Unden, G., 1998, Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions. J. Bacteriol., 180:2133–2136.

    PubMed  CAS  Google Scholar 

  9. Asturias, J.A., Eltis, L.D., Prucha, M., and Timmis, K.N., 1994, Analysis of three 2,3-dihydroxybiphenyl 1,2-dioxygenases found in Rhodococcus globerulus P6. Identification of a new family of extradiol dioxygenases. J. Biol. Chem., 269:7807–7815.

    PubMed  CAS  Google Scholar 

  10. Barbosa, C.J., Vaillancourt, F.H., Eltis, L.D., Blades, M.W., and Turner, R.F.B., 2002, The power distribution advantage of fiber-optic coupled ultraviolet resonance Raman spectroscopy for bioanalytical and biomedical applications. J. Raman Spectrosc., 33:503–510.

    Article  CAS  Google Scholar 

  11. Bartels, I., Knackmuss, H.-J., and Reineke, W., 1984, Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol., 47:500–505.

    PubMed  CAS  Google Scholar 

  12. Benvenuti, M., Briganti, F., Scozzafava, A., Golovleva, L., Travkin, VM., and Mangani, S., 1999, Crystallization and preliminary crystallographic analysis of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E: A novel dioxygenase involved in the biodegradation of polychlorinated aromatic compounds. Acta Crystallogr. D Biol. Crystallogr., 55:901–903.

    Article  PubMed  CAS  Google Scholar 

  13. Bernat, B.A., Laughlin, L.T., and Armstrong, R.N., 1997, Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry, 36:3050–3055.

    Article  PubMed  CAS  Google Scholar 

  14. Bertini, I., Briganti, F., and Scozzafava, A., 1994, Aliphatic and aromatic inhibitors binding to the active site of catechol 2,3-dioxygenase from Pseudomonas putida mt-2. FEBS Lett., 343:56–60.

    Article  PubMed  CAS  Google Scholar 

  15. Bolin, J.T. and Eltis, L.D., 2001, 2,3-Dihydroxybiphenyl 1,2-dioxygenase, In A. Messerschmidt, R. Huber, T. Poulos, and K. Wieghardt (eds), Handbook of Metalloproteins, pp. 632–642. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  16. Bugg, T.D.H. and Lin, G., 2001, Solving the riddle of the intradiol and extradiol catechol dioxygenases: How do enzymes control hydroperoxide rearrangements? Chem. Commun., 2001:941–952.

    Article  CAS  Google Scholar 

  17. Bugg, T.D.H., 1993, Overproduction, purification and properties of 2,3-dihydroxyphenylpro-pionate 1,2-dioxygenase from Escherichia coli. Biochim. Biophys. Acta, 1202:258–264.

    Article  PubMed  CAS  Google Scholar 

  18. Bull, C., Ballou, D.P., and Otsuka, S., 1981, The reaction of oxygen with protocatechuate 3,4-dioxygenase from Pseudomonas putida. Characterization of a new oxygenated intermediate. J. Biol. Chem., 256:12681–12686.

    PubMed  CAS  Google Scholar 

  19. Cain, R.B., 1968, Anthranilic acid metabolism by microorganisms. Formation of 5-hydrox-yanthranilate as an intermediate in anthranilate metabolism by Norcardia opaca. Antonie Van Leeuwenhoek, 34:17–32.

    Article  PubMed  CAS  Google Scholar 

  20. Cameron, A.D., Olin, B., Ridderstrom, M., Mannervik, B., and Jones, T.A., 1997, Crystal structure of human glyoxalase I—evidence for gene duplication and 3D domain swapping. EMBO J., 16:3386–3395.

    Article  PubMed  CAS  Google Scholar 

  21. Catelani, D., Colombi, A., Sorlini, C., and Treccani, V., 1973, Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate: The meta-cleavage product from 2,3-dihydroxy-biphenyl by Pseudomonas putida. Biochem. J., 134:1063–1066.

    PubMed  CAS  Google Scholar 

  22. Cerdan, P., Rekik, M., and Harayama, S., 1995, Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Eur. J. Biochem., 229:113–118.

    Article  PubMed  CAS  Google Scholar 

  23. Cerdan, P., Wasserfallen, A., Rekik, M., Timmis, K.N., and Harayama, S., 1994, Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J. Bacteriol., 176:6074–6081.

    PubMed  CAS  Google Scholar 

  24. Chauhan, A., Samanta, S.K., and Jain, R.K., 2000, Degradation of 4-nitrocatechol by Burkholderia cepacia: A plasmid-encoded novel pathway. J. Appl. Microbiol., 88:764–772.

    Article  PubMed  CAS  Google Scholar 

  25. Cleasby, A., Wonacott, A., Skarzynski, T., Hubbard, R.E., Davies, G.J., Proudfoot, A.E., Bernard, AR., Payton, M.A., and Wells, T.N., 1996, The x-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 angstrom resolution. Nat. Struct. Biol., 3:470–479.

    Article  PubMed  CAS  Google Scholar 

  26. Cooper, R.A. and Skinner, M.A., 1980, Catabolism of 3-and 4-hydroxyphenylacetate by the 3,4-dihydroxyphenylacetate pathway in Escherichia coli. J. Bacteriol., 143:302–306.

    PubMed  CAS  Google Scholar 

  27. Crawford, R.L., 1976, Pathways of 4-hydroxybenzoate degradation among species of Bacillus. J. Bacteriol., 127:204–210.

    PubMed  CAS  Google Scholar 

  28. Crawford, R.L., Hutton, S.W., and Chapman, P.J., 1975, Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J. Bacteriol., 121:794–799.

    PubMed  CAS  Google Scholar 

  29. Dagley, S., 1978, Determinants of biodegradability. Q. Rev. Biophys., 11:577–602.

    Article  PubMed  CAS  Google Scholar 

  30. Dagley, S., 1986, Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. In J.R. Sokatch and J.L. Ornston (eds), The Bacteria, vol. 10, pp. 527–555. Academic Press Inc., Orlando, FL.

    Google Scholar 

  31. Dai, S., Vaillancourt, F.H., Maaroufi, H., Drouin, N.M., Neau, D.B., Snieckus, V., Bolin, J.T., and Eltis, L.D., 2002, Identification and analysis of a bottleneck in PCB biodegradation. Nat. Struct. Biol., 9:934–939.

    Article  PubMed  CAS  Google Scholar 

  32. Dai, Y., Wensink, P.C., and Abeles, R.H., 1999, One protein, two enzymes. J. Biol. Chem., 274:1193–1195.

    Article  PubMed  CAS  Google Scholar 

  33. Daubaras, D.L., Hershberger, CD., Kitano, K., and Chakrabarty, A.M., 1995, Sequence analysis of a gene cluster involved in metabolism of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia AC1100. Appl. Environ. Micmbiol., 61:1279–1289.

    CAS  Google Scholar 

  34. Davis, J.K., He, Z., Somerville, C.C., and Spain, J.C., 1999, Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase ofPseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: Divergent evolution of 2-aminophenol meta-cleavage pathway. Arch. Micmbiol., 172:330–339.

    Article  CAS  Google Scholar 

  35. Davis, M.I., Wasinger, E.C., Decker, A., Pau, M.Y.M., Vaillancourt, F.H., Bolin, J.T., Eltis, L.D., Hedman, B., Hodgson, K.O., and Solomon, E.I., 2003, Spectroscopic and electronic structure studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase: O2 reactivity of the non-heme ferrous site in extradiol dioxygenases. J. Am. Chem. Soc., 125:11214–11227.

    Article  PubMed  CAS  Google Scholar 

  36. DeLano, W.L., 2002, The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.

    Google Scholar 

  37. Dumas, P., Bergdoll, M., Cagnon, C., and Masson, J.M., 1994, Crystal structure and sitedirected mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBOJ., 13:2483–2492.

    CAS  Google Scholar 

  38. Dunwell, J.M., Culham, A., Carter, CE., Sosa-Aguirre, C.R., and Goodenough, P.W., 2001, Evolution of functional diversity in the cupin superfamiry. Trends Biochem. Sci., 26:740–746.

    Article  PubMed  CAS  Google Scholar 

  39. Dunwell, J.M., Khuri, S., and Gane, P.J., 2000, Microbial relatives of me seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Micmbiol. Mol. Biol. Rev., 64:153–179.

    Article  CAS  Google Scholar 

  40. Elgren, T.E., Orville, A.M., Kelly, K.A., Lipscomb, J.D., Ohlendorf, D.H., and Que, L. Jr, 1997, Crystal structure and resonance Raman studies of protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate. Biochemistry, 36:11504–11513.

    Article  PubMed  CAS  Google Scholar 

  41. Eltis, L.D. and Bolin, J.T., 1900, Evolutionary relationships among extradiol dioxygenases. J. Bacteriol., 178:5930–5937.

    Google Scholar 

  42. Eltis, L.D., Hofmann, B., Hecht, H.J., Liinsdorf, H., and Timmis, K.N., 1993, Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J. Biol. Chem., 268:2727–2732.

    PubMed  CAS  Google Scholar 

  43. Fetzner, S., 2002, Oxygenases without requirement for cofactors or metal ions. Appl. Micmbiol. Biotechnol., 60:243–257.

    Article  CAS  Google Scholar 

  44. Flatmark, T. and Stevens, R.C., 1999, Structural insight into the aromatic amino acid hydrox-ylases and their disease-related mutant forms. Chem. Rev., 99:2137–2160.

    Article  PubMed  CAS  Google Scholar 

  45. Frazee, R.W., Orville, AM., Dolbeare, K.B., Yu, H., Ohlendorf, D.H., and Lipscomb, J.D., 1998, The axial tyrosinate Fe3+ ligand in protocatechuate 3,4-dioxygenase influences substrate binding and product release: Evidence for new reaction cycle intermediates. Biochemistry, 37:2131–2144.

    Article  PubMed  CAS  Google Scholar 

  46. Fusetti, F., Schroter, KJL, Steiner, R.A., van Noort, P.I., Pijning, T., Rozeboom, H.J., Kalk, ICH., Egmond, M.R, and Dijkstra, B.W., 2002, Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. Structure, 10:259–268.

    Article  PubMed  CAS  Google Scholar 

  47. Gaal, A. and Neujahr, H.Y., 1979, Metabolism of phenol and resorcinol in Trickosporon cutaneum. J Bacteriol., 137:13–21.

    PubMed  CAS  Google Scholar 

  48. Gerlt, J.A. and Babbitt, P.C., 2001, Divergent evolution of enzymatic function: Mechanistically diverse superfamilies and functionally distinct suprafamilies. Ann. Rev. Biochem., 70:209–246.

    Article  PubMed  CAS  Google Scholar 

  49. Gescher, J., Zaar, A., Mohamed, M., Schagger, H., and Fuchs, G., 2002, Genes coding for a new pathway of aerobic benzoate metabolism in Azoarcus evansii. J. Bacteriol., 184:6301–6315

    Article  PubMed  CAS  Google Scholar 

  50. Gibello, A., Ferrer, E., Martin, M., and Garrido-Pertierra, A., 1994, 3,4-Dihydroxy-phenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg2+-containing dioxygenase involved in aromatic catabolism. Biochem. J., 301:145–150.

    PubMed  CAS  Google Scholar 

  51. Gibson, D.T., Koch, JR., and Kallio, R.E., 1968, Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry, 7:2653–2662.

    Article  PubMed  CAS  Google Scholar 

  52. Grund, E., Denecke, B., and Eichenlaub, IL, 1992, Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl. Environ. Micmbiol., 58:1874–1877.

    CAS  Google Scholar 

  53. Hamilton, A.J., Lycett, G.W., and Grierson, D., 1990, Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature, 346:284–287.

    Article  CAS  Google Scholar 

  54. Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W., and Bolin, J.T., 1995, Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science, 270:976–980.

    Article  PubMed  CAS  Google Scholar 

  55. Happe, B., Eltis, L.D., Poth, H., Hedderich, R., and Timmis, K.N., 1993, Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran-and dibenzo-p-dioxin-degrading bacterium Sphingomonas sp. strain RW1. J. Bacteriol., 175:7313–7320.

    PubMed  CAS  Google Scholar 

  56. Harayama, S. and Rekik, M., 1989, Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J. Biol. Chem., 264:15328–15333.

    PubMed  CAS  Google Scholar 

  57. Harayama, S., Kok, M., and Neidle, E.L., 1992, Functional and evolutionary relationships among diverse oxygenases. Annu. Rev. Microbiol., 46:565–601.

    Article  PubMed  CAS  Google Scholar 

  58. Harpel, M.R. and Lipscomb, J.D., 1990, Gentisate 1,2-dioxygenase from pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovomns. J. Biol. Chem., 265:6301–6311.

    PubMed  CAS  Google Scholar 

  59. Harta, T, Mukerjee-Dhar, G., Damborsky, J., Kiyohara, H., and Kimbara, K, 2003, Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a PCB and naphthalene-degrading Bacillus sp. JF8. J. Biol. Chem., 278:21483–21492.

    Article  CAS  Google Scholar 

  60. Hayaishi, O. and Hashimoto, K., 1950, Pyrocatecase, a new enzyme catalyzing oxidative breakdown of pyrocatechin. J. Biochem., 37:371–374.

    CAS  Google Scholar 

  61. Hegg, E.L. and Que, L. Jr, 1997, The 2-His-l-carboxylate facial triad—an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem., 250:625–629.

    Article  PubMed  CAS  Google Scholar 

  62. Heiss, G., Stolz, A., Kuhm, A.E., Müller, C., Klein, J., Altenbuchner, J., and Knackmuss, H.-J., 1995, Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J. Bacteriol., 177:5865–5871.

    PubMed  CAS  Google Scholar 

  63. Hewitson, K.S., McNeill, L.A., Riordan, M.V, Tian, Y.-M, Bullock, A.N., Welford, R.W., Elkins, J.M., Oldham, N.J., Bhattacharya, S., Gleadle, J.M., Ratcliffe, P.J., Pugh, C.W., and Schofield, C.J., 2002, Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem., 277:26351–26355.

    Article  PubMed  CAS  Google Scholar 

  64. Hintner, J.P., Lechner, C., Riegert, U., Kuhm, A.E., Storm, T., Reemtsma, T., and Stolz, A., 2001, Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J. Bacteriol., 183:6936–6942.

    Article  PubMed  CAS  Google Scholar 

  65. Hopper, D.J. and Taylor, D.G., 1975, Pathways for the degradation of m-cresol andp-cresol by Pseudomonasputida. J. Bacteriol., 122:1–6.

    PubMed  CAS  Google Scholar 

  66. Hori, K., Hashimoto, T., and Nozaki, M., 1973, Kinetic studies on the reaction mechanism of dioxygenases. J. Biochem., 74:375–384.

    PubMed  CAS  Google Scholar 

  67. Hughes, E.J. and Bayly, R.C., 1983, Control of catechol meta-cleavage pathway in Alcaligenes eutrophus. J. Bacteriol., 154:1363–1370.

    PubMed  CAS  Google Scholar 

  68. Hugo, N., Meyer, C., Armengaud, J., Gaillard, J., Timmis, K.N., and Jouanneau, Y., 2000, Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: Evidence for their involvement in catechol dioxygenase reactivation. J. Bacteriol., 182:5580–5585.

    Article  PubMed  CAS  Google Scholar 

  69. Imbeault, N.Y.R., Powlowski, J.B., Colbert, C.L., Bolin, J.T., and Eltis, L.D., 2000, Steadystate kinetic characterization and crystallization of a polychlorinated biphenyl-transforming dioxygenase. J. Biol. Chem., 275:12430–12437.

    Article  PubMed  CAS  Google Scholar 

  70. Iwabuchi, T. and Harayama, S., 1998, Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J. Biol. Chem., 273:8332–8336.

    Article  PubMed  CAS  Google Scholar 

  71. Jain, R.K., Dreisbach, J.H., and Spain, J.C., 1994, Biodegradation of P-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl. Environ. Microbiol. 60:3030–3032.

    PubMed  CAS  Google Scholar 

  72. Jeffrey, A.M., Yeh, H.J., Jerina, D.M., Patel, T.R., Davey, J.F., and Gibson, D.T., 1975, Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry, 14:575–584.

    Article  PubMed  CAS  Google Scholar 

  73. Kabisch, M. and Fortnagel, P., 1990, Nucleotide sequence of metapyrocatechase I (catechol 2,3-oxygenase I) gene mpcI from Alcaligenes eutrophus JMP222. Nucleic Acids Res., 18:3405–3406.

    Article  PubMed  CAS  Google Scholar 

  74. Kauppi, B., Lee, K., Carredano, E., Parales, R.E., Gibson, D.T., Eklund, H., and Ramaswamy, S., 1998, Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure, 6:571–586.

    Article  PubMed  CAS  Google Scholar 

  75. Keyser, P., Pujar, B.G., Eaton, R.W., and Ribbons, D.W., 1976, Biodegradation of the phthalates and their esters by bacteria. Environ. Health Perspect., 18:159–166.

    Article  PubMed  CAS  Google Scholar 

  76. Kita, A., Kita, S., Fujisawa, I., Inaka, K., Ishida, T., Horiike, K., Nozaki, M., and Miki, K., 1999, An archetypical extradiol-cleaving catecholic dioxygenase: The crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure, 7:25–34.

    Article  PubMed  CAS  Google Scholar 

  77. Klages, U., Markus, A., and Lingens, E, 1981, Degradation of 4-chlorophenylacetic acid by a Pseudomonas species. J. Bacteriol., 146:64–68.

    PubMed  CAS  Google Scholar 

  78. Klecka, G.M. and Gibson, D.T., 1981, Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol., 41:1159–1165.

    PubMed  CAS  Google Scholar 

  79. Kobayashi, T., Ishida, T., Horiike, K., Takahara, Y., Numao, N., Nakazawa, A., Nakazawa, T., and Nozaki, M., 1995, Overexpression ofPseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli J. Biochem., 117:614–622.

    PubMed  CAS  Google Scholar 

  80. Kojima, Y., Itada, N., and Hayaishi, O., 1961, Metapyrocatechase: A new catechol-cleaving enzyme. J. Biol Chem., 236:2223–2228.

    PubMed  CAS  Google Scholar 

  81. Kraulis, P.J., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24:945–949.

    Article  CAS  Google Scholar 

  82. Kukor, J.J. and Olsen, R.H., 1996, Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl. Environ. Microbiol., 62:1728–1740.

    PubMed  CAS  Google Scholar 

  83. La Du, B.N., Zannoni, VG., Laster, L., and Seegmiller, J.E., 1958, Nature of the defect in tyrosine metabolism in alcaptonuria. J. Biol. Chem., 230:251–260.

    Google Scholar 

  84. Lah, M.S., Dixon, M.M., Partridge, K.A., Stallings, W.C., Fee, J.A., and Ludwig, M.L., 1995, Structure-function in Escherichia coli iron Superoxide dismutase: Comparisons with the manganese enzyme from Thermus thermophilus. Biochemistry, 34:1646–1660.

    Article  PubMed  CAS  Google Scholar 

  85. Lendenmann, U. and Spain, J.C., 1996, 2-aminophenol 1,6-dioxygenase: A novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J. Bacteriol., 178:6227–6232.

    PubMed  CAS  Google Scholar 

  86. Lin, G., Reid, G., and Bugg, T.D.H., 2001, Extradiol oxidative cleavage of catechols by ferrous and ferric complexes of 1,4,7-triazacyclononane: Insight into the mechanism of the extradiol catechol dioxygenases. J.Am. Chem. Soc., 123:5030–5039.

    Article  PubMed  CAS  Google Scholar 

  87. Mabrouk, P.A., Orville, A.M., Lipscomb, J.D., and Solomon, E.I., 1991, Variable-temperature variable-field magnetic circular dichroism studies of the iron(II) active site in metapyrocatechase: Implications for the molecular mechanism of extradiol dioxygenases. J. Am. Chem. Soc., 113:4053–4061.

    Article  CAS  Google Scholar 

  88. Mars, A.E., Kasberg, T., Kaschabek, S.R., van Agteren, M.H., Janssen D.B., and Reineke, W. 1997, Microbial degradation of chloroaromatics: Use of the meta-cleavage pathway for mineralization of chlorobenzene. J. Bacteriol., 179:4530–4537.

    PubMed  CAS  Google Scholar 

  89. Mars, A.E., Kingma, J., Kaschabek, S.R., Reineke, W., and Janssen, D.B., 1999, Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol., 181:1309–1318.

    PubMed  CAS  Google Scholar 

  90. Mashetty, S.B., Manohar, S., and Karegoudar, T.B., 1996, Degradation of 3-hydroxybenzoic acid by a Bacillus species. Indian J. Biochem. Biophys., 33:145–148.

    PubMed  CAS  Google Scholar 

  91. Mattevi, A., Fraaije, M.W., Mozzarelli, A., Olivi, L., Coda, A., and van Berkel, W.J., 1997, Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: The shape of the active-site cavity controls substrate specificity. Structure, 5:907–920.

    Article  PubMed  CAS  Google Scholar 

  92. McCarthy, A.A., Baker, H.M., Shewry, S.C., Patchett, M.L., and Baker, E.N., 2001, Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: A novel enzymatic function on an ancient metal binding scaffold. Structure, 9:637–646.

    Article  PubMed  CAS  Google Scholar 

  93. McMurry, J., 1992, Organic Chemistry, 3rd edn, Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  94. Merritt, E.A. and Bacon, D.J., 1997, Raster3D: Photorealistic molecular graphics. Methods Enzymol., 277:505–524.

    Article  PubMed  CAS  Google Scholar 

  95. Minor, W., Steczko, I, Stec, B., Otwinowski, Z., Bolin, J.T., Walter, R., and Axelrod, B., 1996, Crystal structure of soybean lipoxygenase L-l at 1.4 Å resolution. Biochemistry, 35:10687–10701.

    Article  PubMed  CAS  Google Scholar 

  96. Mitchell, R.A., Kang, H.H., and Henderson, L.M., 1963, Inactivation during functioning of 3-hydroxyanthranilate oxidase resulting from oxidation of bound ferrous iron. J. Biol. Chem., 238:1151–1155.

    CAS  Google Scholar 

  97. Miyauchi, K., Adachi, Y., Nagata, Y., and Takagi, M., 1999, Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol., 181:6712–6719.

    PubMed  CAS  Google Scholar 

  98. Mohamed, M.E., Zaar, A., Ebenau-Jehle, C., and Fuchs, G. 2001, Reinvestigation of a new type of aerobic benzoate metabolism in 1he proteobacterium Azoarcus evansii. J. Bacteriol., 183:1899–1908.

    Article  PubMed  CAS  Google Scholar 

  99. Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H., and Lau, P.C., 2003, Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-caiboxymuconate-6-semialdehyde decaiboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl. Environ. Microbiol., 69:1564–1572.

    Article  PubMed  CAS  Google Scholar 

  100. Murray, K., Duggleby, C J., Sala-Trepat, J.M., and Williams, P.A., 1972, The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. EUR. J. Biochem., 28:301–310.

    Article  PubMed  CAS  Google Scholar 

  101. Nozaki, M., Kagamiyama, H., and Hayaishi, O., 1963, Metapyrocatechase. I. Purification, crystallization, and some properties. Biochem. Z., 338:582–590.

    PubMed  CAS  Google Scholar 

  102. Nozaki, M., Katsushiko, K., Nakazawa, T., Kotani, S., and Hayaishi, O., 1968, Metapyrocatechase II. The role of iron and sulfhydryl groups. J. Biol. Chem., 243:2682–2690.

    PubMed  CAS  Google Scholar 

  103. Ohlendorf, D.H. and Vetting, M.W., 2001, Protocatechuate 3,4-dioxygenase. In A. Messerschmidt, R. Huber, T. Poulos, and K. Wieghardt (eds), Handbook of Metalloproteins, pp. 622–631. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  104. Ohlendorf, D.H., Lipscomb, J.D., and Weber, P.C., 1988, Structure and assembly of protocatechuate 3,4-dioxygenase. Nature, 336:403–405.

    Article  PubMed  CAS  Google Scholar 

  105. Ohlendorf, D.H., Orville, A.M., and Lipscomb, J.D., 1994, Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 Å resolution. J. Mol. Biol., 244:586–608.

    Article  PubMed  CAS  Google Scholar 

  106. Ono, K., Nozaki, M., and Hayaishi, O., 1970, Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim. Biophys. Acta, 220:224–238.

    Article  PubMed  CAS  Google Scholar 

  107. Orville, A.M. and Lipscomb, J.D., 1997, Cyanide and nitric oxide binding to reduced protocatechuate 3,4-dioxygenase: Insight into the basis for order-dependent ligand binding by intradiol catecholic dioxygenases. Biochemistry, 36:14044–14055.

    Article  PubMed  CAS  Google Scholar 

  108. Orville, A.M., Lipscomb, J.D., and Ohlendorf, D.H., 1997, Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: Endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry, 36:10052–10066.

    Article  PubMed  CAS  Google Scholar 

  109. Parli, C.J., Krieter, P., and Schmidt, B., 1980, Metabolism of 6-chlorotryptophan to 4-chloro-3-hydroxyanthranilic acid: A potent inhibitor of 3-hydroxyanthranilic acid oxidase. Arch. Biochem. Biophys., 203:161–166.

    Article  PubMed  CAS  Google Scholar 

  110. Pascal, R.A. and Huang, D.-S., 1987, Mechanism-based inactivation of catechol 2,3-dioxygenase by 3-[(methylthio)memyl]catechol. J. Am. Chem. Soc., 109:2854–2855.

    Article  CAS  Google Scholar 

  111. Pochapsky, T.C., Pochapsky, S.S., Ju, T., Mo, H., Al-Mjeni, E, and Maroney, M.J., 2002, Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae. Nat. Struct. Biol. 9:966–972

    Article  PubMed  CAS  Google Scholar 

  112. Polissi, A. and Harayama, S., 1993, In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: A bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J., 12:3339–3347.

    PubMed  CAS  Google Scholar 

  113. Priefert, H., Rabenhorst, J., and Steinbuchel, A., 1997, Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate. J. Bacteriol., 179:2595–2607.

    PubMed  CAS  Google Scholar 

  114. Que, L. Jr and Epstein, R.M., 1981, Resonance Raman studies on protocatechuate 3,4-dioxy-genase-inhibitor complexes. Biochemistry, 20:2545–2549.

    Article  PubMed  CAS  Google Scholar 

  115. Que, L. Jr and Ho, R.Y.N., 1996, Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem. Rev., 96:2607–2624.

    Article  PubMed  CAS  Google Scholar 

  116. Que, L. Jr. and Reynolds, M.F., 2000, Manganese(II)-dependent extradiol-cleaving catechol dioxygenases. Met. Ions Biol. Syst., 37:505–525.

    PubMed  CAS  Google Scholar 

  117. Que, L. Jr., 2000, One motif— many different reactions. Nat. Struct. Biol., 7:182–184.

    Article  PubMed  CAS  Google Scholar 

  118. Que, L. Jr, Lipscomb, J.D., Münck, E., and Wood, J.M., 1977, Protocatechuate 3,4-dioxygenase. Inhibitor studies and mechanistic implications. Biochim. Biophys. Acta, 485:60–74.

    Article  PubMed  CAS  Google Scholar 

  119. Riegert, U., Heiss, G., Fischer, P., and Stolz, A., 1998, Distal cleavage of 3-chlorocatechol by an extradiol dioxygenase to 3-chloro-2-hydroxymuconic semialdehyde. J. Bacteriol., 180:2849–2853.

    PubMed  CAS  Google Scholar 

  120. Roach, P.L., Clifton, I.J., Hensgens, CM., Shibata, N., Schofield, C.J., Hajdu, J., and Baldwin, J.E., 1997, Structure of isopenicillin N synthase complexed with substrate and the mechanism of penicillin formation. Nature, 387:827–830.

    Article  PubMed  CAS  Google Scholar 

  121. Rojo, F., Pieper, D.H., Engesser, K.H., Knackmuss, H.J., and Timmis, K.N., 1987, Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science, 238:1395–1398.

    Article  PubMed  CAS  Google Scholar 

  122. Roper, D.I. and Cooper, R.A., 1990, Subcloning and nucleotide sequence of the 3,4-dihy-droxyphenylacetate (homoprotocatechuate) 2,3-dioxygenase gene from Escherichia coli C. FEBS Lett., 275:53–57.

    Article  PubMed  CAS  Google Scholar 

  123. Sanvoisin, J., Langley, G.J., and Bugg, T.D.H., 1995, Mechanism of extradiol catechol dioxy-genases: Evidence for a lactone intermediate in the 2,3-dihydroxyphenylpropionate 1,2-dioxygenase reaction. J. Am. Chem.. Soc., 117:7836–7837.

    Article  CAS  Google Scholar 

  124. Sato, N., Uragami, Y., Nishizaki, T., Takahashi, Y., Sazaki, G., Sugimoto, K., Nonaka, T., Masai, E., Fukuda, M., and Senda, T., 2002, Crystal structures of the reaction intermediate and its homologue of an extradiol-cleaving catecholic dioxygenase. J. Mol. Biol., 321:621–636.

    Article  PubMed  CAS  Google Scholar 

  125. Schwarcz, R., Okuno, E., White, R.J., Bird, E.D., and Whetsell, W.O. Jr, 1988, 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc. Natl. Acad. Sci. USA, 85:4079–4081.

    Article  PubMed  CAS  Google Scholar 

  126. Senda, T., Sugiyama, K., Narita, H., Yamamoto, T., Kimbara, K., Fukuda, M., Sato, M., Yano, K., and Mitsui, Y., 19%, Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J. Mol. Biol., 255:735-752.

    Google Scholar 

  127. Serre, L., Sailland, A., Sy, D, Boudec, P., Rolland, A., Pebay-Peyroula, E., and Cohen-Addad, C., 1999, Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: An enzyme involved in the tyrosine degradation pathway. Structure, 7:977–988.

    Article  PubMed  CAS  Google Scholar 

  128. Shu, L., Chiou, Y.M., Orville, A.M., Miller, M.A., Lipscomb, J.D., and Que, L. Jr, 1995, X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry, 34:6649–6659.

    Article  PubMed  CAS  Google Scholar 

  129. Solomon, E.I., Brunold, T.C., Davis, M.I., Kemsley, J.N., Lee, S.K., Lehnert, N., Neese, F., Skulan, A J., Yang, Y.-S., and Zhou, J., 2000, Geometric and electronic structure/frmction correlations in non-heme iron enzymes. Chem. Rev., 100:235–349.

    Article  PubMed  CAS  Google Scholar 

  130. Spence, E.L., Kawamukai, M., Sanvoisin, J., Braven, H., and Bugg, T.D.H., 1996, Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (Mpcl): Sequence analysis and biochemical properties of a third family of extradiol dioxygenases. J. Bacteriol., 178:5249–5256.

    PubMed  CAS  Google Scholar 

  131. Spence, E.L., Langley, G.J., and Bugg, T.D.H., 1996, Cis-Trans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: Evidence for a semiquinone intermediate. J. Am. Chem. Soc., 118:8336–8343.

    Article  CAS  Google Scholar 

  132. Stanier, R.Y. and Ingraham, J.L., 1954, Protocatechuic acid oxidase. J. Biol. Chem., 210:799–808.

    PubMed  CAS  Google Scholar 

  133. Stolz, A., Nortemann, B., and Knackmuss, H.-X, 1992, Bacterial metabolism of 5-aminosal-icylic acid. Initial ring cleavage.Biochem. J., 282:675–680.

    PubMed  CAS  Google Scholar 

  134. Suda, S. and Takeda, Y., 1950, Metabolism of tyrosine 1. Application of successive adaptation of bacteria for the analysis of the enzymatic breakdown of tyrosine. J. Biochem., 37:375–378.

    CAS  Google Scholar 

  135. Sugimoto, K., Senda, T., Aoshima, H., Masai, E., Fukuda, M., and Mitsui, Y., 1999, Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure, 7:953–965.

    Article  PubMed  CAS  Google Scholar 

  136. Takenaka, S., Murakami, S., Shinke, R., Hatakeyama, K., Yukawa, H., and Aoki, K., 1997, Novel genes encoding 2-aminophenol 1,6-dioxygenase from Pseudomonas species AP-3 growing on 2-aminophenol and catalytic properties of the purified enzyme. J. Biol Chem., 272:14727–14732.

    Article  PubMed  CAS  Google Scholar 

  137. Timmis, K.N., Steffan, R.J., and Unterman, R., 1994, Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol., 48:525–557.

    Article  PubMed  CAS  Google Scholar 

  138. Titus, G.R, Mueller, H.A., Burgner, J., Rodriguez de Cordoba, S., Penalva, M.A., and Timm, D.E., 2000, Crystal structure of human homogentisate dioxygenase. Nat. Struct. Biol., 7:542–546.

    Article  PubMed  CAS  Google Scholar 

  139. Tropel, D., Meyer, C., Armengaud, J., and Jouanneau, Y., 2002, Ferredoxin-mediated reactivation of the chlorocatechol 2,3-dioxygenase from Pseudomonas putida GJ31. Arch. Microbiol., 177:345–351.

    Article  PubMed  CAS  Google Scholar 

  140. True, A.E., Orville, A.M., Pearce, L.L., Lipscomb, J.D., and Que, L. Jr, 1990, An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxy-genase. Biochemistry, 29:10847–10854.

    Article  PubMed  CAS  Google Scholar 

  141. Tyson, CA., 1975,4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases. J. Biol Chem., 250:1765–1770

    PubMed  CAS  Google Scholar 

  142. Uragami, Y., Senda, T., Sugimoto, K., Sato, N., Nagarajan, V., Masai, E., Fukuda, M., and Mitsui, Y., 2001, Crystal structures of substrate free and complex forms of reactivated BphC., an extradiol type ring-cleavage dioxygenase. J. Inorg. Biochem., 83:269–279.

    Article  PubMed  CAS  Google Scholar 

  143. Vaillancourt, F.H., Barbosa, C.J., Spiro, T.G., Bolin, J.T., Blades, M.W., Turner, R.F.B., and Eltis, L.D., 2002, Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. J. Am. Chem. Soc, 124:2485–2496.

    Article  PubMed  CAS  Google Scholar 

  144. Vaillancourt, F.H., Han, S., Fortin, P.D., Bolin, J.T., and Eltis, L.D., 1998, Molecular basis for the stabilization and inhibition of 2, 3-dihydroxybiphenyl 1,2-dioxygenase by J-butanol. J. Biol Chem., 273:34887–34895.

    Article  PubMed  CAS  Google Scholar 

  145. Vaillancourt, F.H., Haro, M.A., Drouin, N.M., Karim, Z., Maaroufi, H., and Eltis, L.D., 2003, Characterization of extradiol dioxygenases from a polychlorinated biphenyl-degrading strain that possess higher specificities for chlorinated metabolites. J. Bacteriol., 185:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  146. Vaillancourt, F.H., Labbé, G., Drouin, N.M., Fortin, P.D., and Eltis, L.D., 2002, The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J. Biol Chem., 277:2019–2027.

    Article  PubMed  CAS  Google Scholar 

  147. Valegard, K., van Scheltinga, A.C., Lloyd, M.D., Hara, T., Ramaswamy, S., Perrakis, A., Thompson, A., Lee, H.J., Baldwin, J.E., Schofield, C.J., Hajdu, J., and Andersson, I., 1998, Structure of a cephalosporin synthase. Nature, 394:805–809.

    Article  PubMed  CAS  Google Scholar 

  148. Vescia, A. and Di Prisco, G., 1962, Studies on purified 3-hydroxyanthranilic acid oxidase. J. Biol Chem., 237:2318–2324.

    PubMed  CAS  Google Scholar 

  149. Verting, M.W. and Ohlendorf, D.H., 2000, The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure, 8:429–440.

    Article  Google Scholar 

  150. Vetting, M.W., D’Argenio, D.A., Ornston, L.N., and Ohlendorf, D.H., 2000, Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 Å resolution: Implications for the mechanism of an intradiol dioxygenase. Biochemistry, 39:7943–7955.

    Article  PubMed  CAS  Google Scholar 

  151. Walsh, J.L., Wu, H.-Q., Ungerstedt, U., and Schwarcz, R., 1994, 4-Chloro-3-hydroxyan-thranilate inhibits quinolinate production in the rat hippocampus in vivo. Brain Res. Bull., 33:513–516.

    CAS  Google Scholar 

  152. Walsh, T.A., Ballou, D.P., Mayer, R., and Que, L. Jr, 1983, Rapid reaction studies on the oxygenation reactions of catechol dioxygenase. J. Biol. Chem., 258:14422–14427.

    PubMed  CAS  Google Scholar 

  153. Wang, Y.Z. and Lipscomb, J.D. 1997, Cloning, overexpression, and mutagenesis of the gene for homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum. Protein Expr. Purif., 10:1–9.

    Article  PubMed  CAS  Google Scholar 

  154. Wasinger, E.C., Davis, M.I., Pau, M.Y.M., Orville, A.M., Zaleski, J.M., Hedman, B., Lipscomb, J.D., Hodgson, K.O., and Solomon, E.I., 2003, Spectroscopic studies of the effect of ligand donor strength on the Fe-NO bond intradiol dioxygenases. Inorg. Chem., 42:365–376.

    Article  PubMed  CAS  Google Scholar 

  155. Wasserfallen, A., 1989, Biochemical and genetical study of the specificity of catechol 2,3-dioxygenase from Pseudomonas putida. Ph.D. thesis. University of Geneva.

    Google Scholar 

  156. Whiting, A.K., Boldt, Y.R., Hendrich, M.P, Wackett, L.P., and Que, L. Jr, 1996, Manganese(II)-dependent extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis CM-2. Biochemistry, 35:160–170.

    Article  PubMed  CAS  Google Scholar 

  157. Winfield, C.J., Al-Mahrizy, Z., Gravestock, M., and Bugg, T.D.H., 2000, Elucidation of the catalytic mechanisms of the non-haem iron-dependent catechol dioxygenases: Synthesis of carba-analogues for hydroperoxide reaction intermediates. J. Chem. Soc., Perkin Trans. 1, 2000:3277–3289.

    Google Scholar 

  158. Wolgel, S.A. and Lipscomb, J.D., 1990, Protocatechuate 2,3-dioxygenase from Bacillus macerans. Methods Enzymol., 188:95–101.

    Article  PubMed  CAS  Google Scholar 

  159. Woo, E.J., Dunwell, J.M., Goodenough, P.W., Marvier, A.C., and Pickersgill, R.W., 2000, Germin is a manganese containing homohexamer with oxalate oxidase and Superoxide dismutase activities. Nat. Struct. Biol., 7:1036–1040.

    Article  PubMed  CAS  Google Scholar 

  160. Xu, L., Resing, K., Lawson, S.L., Babbitt, P.C., and Copley, S.D., 1999, Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723. Biochemistry, 38:7659–7669.

    Article  PubMed  CAS  Google Scholar 

  161. Yamaguchi, K., Hosokawa, Y., Kohashi, N., Kori, Y., Sakakibara, S., and Ueda, I., 1978, Rat liver cysteine dioxygenase (cysteine oxidase). Further purification, characterization, and analysis of the activation and inactivation. J. Biochem., 83:479–491.

    PubMed  CAS  Google Scholar 

  162. Zaar, A., Eisenreich, W., Bacher, A., and Fuchs, G., 2001, A novel pathway of aerobic benzoate catabolism in the bacteria Azoarcus evansii and Bacillus stearothermophilus. J. Biol Chem., 276:24997–25004.

    Article  PubMed  CAS  Google Scholar 

  163. Zaborina, O., Latus, M., Eberspacher, J., Golovleva, L.A., and Lingens, F., 1995, Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: Comparison with an analogous enzyme from Azotobacter sp. strain GP1. J. Bacteriol., 177:229–234.

    PubMed  CAS  Google Scholar 

  164. Zhang, Z., Ren, J., Stammers, D.K., Baldwin, J.E., Harlos, K., and Schofield, C.J., 2000, Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol., 7:127–133.

    Article  PubMed  CAS  Google Scholar 

  165. Zhao, G., Xia, T., Song, J., and Jensen, R.A., 1994, Pseudomonas aeruginosa possesses homologues of mammalian phenylalanine hydroxylase and 4 alpha-carbinolamine dehydratase/DCoH as part of a three-component gene cluster. Proc. Natl. Acad. Sci. USA, 91:1366–1370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaillancourt, F.H., Bolin, J.T., Eltis, L.D. (2004). Ring-Cleavage Dioxygenases. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics