Skip to main content

Metabolism of Sulphur-Containing Organic Compounds

  • Chapter
Pseudomonas

Abstract

Pseudomonas species inhabit a wide variety of habitats, ranging from the human body to soils, the rhizosphere, and the phyllosphere. Like all microorganisms, they require sulfur for growth, and this is normally provided by assimilation of inorganic sulfate. However, many pseudomonads inhabit environments where sulfate may not be freely available. In aerobic soils, for instance, inorganic sulfate makes up less than 5% of the total sulfur, and most of the residual sulfur is present as peptides/amino acids, sulfate esters, and sulfonates. Much of this sulfonate content is derived from plant sulfolipid in the thylakoid membranes, which may also provide sulfur for leaf-dwelling pseudomonads. In the human body, other sulfur sources are present, such as the neurotransmitter taurine (2-aminoethane-sulfonate), sulfated mucins in gut and lung environments, and glycosaminoglycan in connective tissue. The importance of sulfur metabolism for pseudomonads is underlined by the fact that in Pseudomonas syringae methionine prototrophy is required for virulence8, while in Pseudomonas putida loss of the ability to desulfurize sulfate esters leads to reduced survival in the soil54.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alaminos, M. and Ramos, J.L., 2001, The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. Arch. Microbiol., 176:151–154.

    PubMed  CAS  Google Scholar 

  2. Andersen, G.L., Beattie, G.A., and Lindow, S.E., 1998, Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. J. Bacteriol., 180:4497–4507.

    PubMed  CAS  Google Scholar 

  3. Autry, A.R. and Fitzgerald, J.W., 1990, Sulfonate S—A major form of forest soil organic sulfur. Biol. Fertil. Soils, 10:50–56.

    CAS  Google Scholar 

  4. Baek, M.C., Kim, S.K., Kim, D.H., Kim, B.K., and Choi, E.C., 1996, Cloning and sequencing of the Klebsiella K-36 astA gene, encoding an arylsulfate sulfotransferase. Micmbiol. Immunol., 40:531–537.

    CAS  Google Scholar 

  5. Baker, S.C., Kelly, D.P., and Murrell, J.C., 1991, Microbial degradation of methanesulfonic acid—a missing link in the biogeochemical sulfur cycle. Nature, 350:627–628.

    CAS  Google Scholar 

  6. Bateman, T.J., Dodgson, K.S., and White, G.F., 1986, Primary alkylsulfatase activities of the detergent-degrading bacterium Pseudomonas C12B: Purification and properties of the P1 enzyme. Biochem. J., 236:401–408.

    PubMed  CAS  Google Scholar 

  7. Beattie, G.A. and Lindow, S.E., 1994, Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl. Environ. Micmbiol., 60:3799–3808.

    CAS  Google Scholar 

  8. Beattie, G.A. and Lindow, S.E., 1994, Survival, growth, and localization of epiphytic fitness mutants of Pseudomonas syringae on leaves. Appl. Environ. Micmbiol., 60:3790–3798.

    CAS  Google Scholar 

  9. Beil, S., Kehrli, H., James, P., Staudenmann, W., Cook, A.M., Leisinger, T., and Kertesz, M.A., 1995, Purification and characterization of the arylsulfatase synthesized by Pseudomonas aeruginosa PAO during growth in sulfate-free medium and cloning of the arylsulfatase gene (atsA). Eur. J. Biochem., 229:385–394

    PubMed  CAS  Google Scholar 

  10. Bick, J.A., Dennis, J.J., Zylstra, G.J., Nowack, J., and Leustek, T., 2000, Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J. Bacteriol., 182:135–142.

    PubMed  CAS  Google Scholar 

  11. Boltes, I., Czapinska, H., Kahnert, A., von Bülow, R., Dierks, T., Schmidt, B., von Figura, K., Kertesz, M.A., and Usón, I., 2001,1.3 Å crystal structure of arylsulfatase from Pseudomonas aeruginosa establishes the catalytic mechanism for sulfate ester cleavage in the sulfatase family. Structure, 9:483–491

    PubMed  CAS  Google Scholar 

  12. Bond, C.S., Clements, P.R., Ashby, S.J., Collyer, CA., Harrop, S.J., Hopwood, J.J., and Guss, J.M., 1997, Structure of a human lysosomal sulfatase. Structure, 5:277–289.

    PubMed  CAS  Google Scholar 

  13. Brilon, C., Beckmann, W., Hellwig, M., and Knackmuss, H.J., 1981, Enrichment and isolation of naphthalenesulfonic acid-utilizing pseudomonads. Appl. Environ. Microbiol., 42:39–43.

    PubMed  CAS  Google Scholar 

  14. Bykowski, T., van der Ploeg, J.R., Iwanicka-Nowicka, R., and Hryniewicz, M.M., 2002, The switch from inorganic to organic sulphur assimilation in Escherichia coli: Adenosine 5′-phosphosulphate (APS) as a signalling molecule for sulphate excess. Mol. Microbiol., 43:1347–1358.

    PubMed  CAS  Google Scholar 

  15. Campos-García, J., Esteve, A., Vázquez-Duhalt, R., Ramos, J.L., and Soberón-Chàvez, G., 1999, The branched-chain dodecylbenzene sulfonate degradation pathway of Pseudomonas aeruginosa W51D involves a novel route for degradation of the surfactant lateral alkyl chain. Appl. Environ. Microbiol., 65:3730–3734.

    PubMed  Google Scholar 

  16. Chai, C.L.L. and Lowe, G., 1992, The mechanism and stereochemical course of sulfuryl transfer catalyzed by the aryl sulfotransferase from Eubacterium A-44. Bioorg. Chem., 20:181–188.

    CAS  Google Scholar 

  17. Chance, D.L. and Mawhinney, T.P., 2000, Carbohydrate sulfation effects on growth of Pseudomonas aeruginosa. Microbiology, 146:1717–1725.

    PubMed  CAS  Google Scholar 

  18. Clinch, K., Evans, G.B., Furneaux, R.H., Rendle, P.M., Rhodes, PL., Robertson, A.M., Rosendale, D.I., Tyler, P.C., and Wright, D.P., 2002, Synthesis and utility of sulfated chromogenic carbohydrate model substrates for measuring activities of mucin-desulfating enzymes. Carbohydr. Res., 337:1095–1111.

    PubMed  CAS  Google Scholar 

  19. Cloves, J.M., Dodgson, K.S., White, G.F., and Fitzgerald, J., 1980, Purification and properties of the P-2 primary alkylsulfohydrolase of the detergent-degrading bacterium Pseudomonas C-12B. Biochem. J., 185:23–32.

    PubMed  CAS  Google Scholar 

  20. Cook, A.M., Laue, H., and Junker, F., 1999, Microbial desulfonation. FEMS Microbiol. Rev., 22:399–419.

    Google Scholar 

  21. Davison, J., Brunei, F., Phanopoulos, A., Prozzi, D., and Terpstra, P., 1992, Cloning and sequencing of Pseudomonas genes determining sodium dodecyl sulfate biodegradation. Gene, 114:19–24.

    PubMed  CAS  Google Scholar 

  22. Delic-Attree, L, Toussaint, B., Garin, J., and Vignais, P.M., 1997, Cloning, sequence and mutagenesis of the structural gene of Pseudomonas aeruginosa CysB, which can activate algD transcription. Mol. Microbiol., 24:1275–1284.

    PubMed  CAS  Google Scholar 

  23. Delisle, G. and Milazzo, F.H., 1970, The isolation of arylsulphatase isoenzymes from Pseudomonas aeruginosa. Biochim. Biophys. Acta, 212:505–508.

    PubMed  CAS  Google Scholar 

  24. Delisle, G.J. and Milazzo, F.H., 1972, Characterization of arylsulfatase isoenzymes from Pseudomonas aeruginosa. Can. J. Microbiol., 18:561–568.

    PubMed  CAS  Google Scholar 

  25. Denger, K. and Cook, A.M., 2001, Ethanedisulfonate is degraded via sulfoacetaldehyde in Ralstonia sp. strain EDS1. Arch. Microbiol., 176:89–95.

    PubMed  CAS  Google Scholar 

  26. Dierks, T., Miech, C., Hummerjohann, J., Schmidt, B., Kertesz, M.A., and von Figura, K., 1998, Posttranslational formation of formylglycine in prokaryotic sulfatases by modification of either cysteine or serine. J. Biol. Chem., 273:25560–25564.

    PubMed  CAS  Google Scholar 

  27. Dodgson, K.S., White, G.F., and Fitzgerald, J.W., 1982, Sulfatases of microbial origin. CRC Press, Boca Raton.

    Google Scholar 

  28. Eaton, R.W. and Nitterauer, J.D., 1994, Biotransformation of benzothiophene by isopropyl-benzene-degrading bacteria. J. Bacteriol., 176:3992–4002.

    PubMed  CAS  Google Scholar 

  29. Eichhorn, E., van der Ploeg, J.R., Kertesz, M.A., and Leisinger, T., 1997, Characterization of α-ketoglutarate dependent taurine dioxygenase from Escherichia coli. J. Biol. Chem., 272:23031–23036.

    PubMed  CAS  Google Scholar 

  30. Eichhorn, E., van der Ploeg, J.R., and Leisinger, T., 1999, Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem., 274:26639–26646.

    PubMed  CAS  Google Scholar 

  31. Eichhorn, E., van der Ploeg, J.R., and Leisinger, T., 2000, Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J. Bacteriol., 182:2687–2695.

    PubMed  CAS  Google Scholar 

  32. Elkins, J.M., Ryle, M.J., Clifton, I.J., Hotopp, J.C.D., Lloyd, J.S., Burzlaff, N.I., Baldwin, IE., Hausinger, R.P., and Roach, PL., 2002, X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry, 41:5185–5192.

    PubMed  CAS  Google Scholar 

  33. Endoh, T., Habe, H., Yoshida, T., Nojiri, H., and Omori, T., 2003, A CysB-regulated and sigma-54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of Pseudomonas putida strain DS1. Microbiology, 149:991–1000.

    PubMed  CAS  Google Scholar 

  34. Endoh, T., Kasuga, K., Horinouchi, M., Yoshida, T., Habe, H., Nojiri, H., and Omori, T., 2003, Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1 Appl. Microbiol. Biotechnol., 62:83–91.

    PubMed  CAS  Google Scholar 

  35. Fitzgerald, J.W., Dodgson, K.S., and Payne, W.J., 1974, Induction of primary alkylsulphatases and metabolism of sodium hexan-1-yl sulphate by Pseudomonas C12B. Biochem. J., 138:63–69.

    PubMed  CAS  Google Scholar 

  36. Fitzgerald, J.W. and Payne, W.J., 1972, The regulation of arylsulfatase activity in Pseudomonas C12B. Microbios., 6:147–156.

    PubMed  CAS  Google Scholar 

  37. Fitzgerald, J.W. and Scott, C.L., 1974, Utilization of choline-0-sulphate as a sulphur source for growth by a Pseudomonas isolate. Microbios, 10:121–131.

    PubMed  CAS  Google Scholar 

  38. Fitzgerald, J.W., Stewart, G.J., and Kight Olliff, L., 1980, Regulation of primary alkylsulfatase induction in Pseudomonas C12B: Concentration-dependent stimulation-inhibition by exogenous UTP and sodium acetate and inhibition by 1-hexanol. Can. J. Microbiol., 26:1348–1355.

    PubMed  CAS  Google Scholar 

  39. Foglino, M., Borne, F., Bally, M., Ball, G., and Patte, J.C., 1995, A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology, 141:431–439.

    PubMed  CAS  Google Scholar 

  40. Gallardo, M.E., Ferrandez, A., De Lorenzo, V., Garcia, J.L., and Diaz, E., 1997, Designing recombinant Pseudomonas strains to enhance biodesulfurization. J. Bacteriol., 179:7156–7160.

    PubMed  CAS  Google Scholar 

  41. Gray, K.A., Pogrebinsky, O.S., Mrachko, G.T., Xi, L., Monticello, DJ., and Squires, C.H., 1996, Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nature Biotechnol., 14:1705–1709.

    CAS  Google Scholar 

  42. Günther, E., Petruschka, L., and Herrmann, H., 1979, Reverse transsulfuration pathway in Pseudomonas aeruginosa. Z. Allg. Mikrobiol., 19:439–442.

    PubMed  Google Scholar 

  43. Harada, T., 1964, The formation of sulphatases in Pseudomonas aeruginosa. Biochim. Biophys. Acta, 81:193–196.

    CAS  Google Scholar 

  44. Haug, W., Schmidt, A., Nortemann, B., Hempel, D.C., Stolz, A., and Knackmuss, H.J., 1991, Mineralization of the sulfonated azo dye Mordant Yellow-3 by a 6-aminonaphthalene-2-sulfonate-degrading bacterial consortium. Appl. Environ. Microbiol., 57: 3144–3149.

    PubMed  CAS  Google Scholar 

  45. Hsu, Y.C., 1965, Detergent-splitting enzyme from Pseudomonas. Nature, 207:385–388.

    PubMed  CAS  Google Scholar 

  46. Hummerjohann, J., Kuttel, E., Quadroni, M., Ragaller, J., Leisinger, T., and Kertesz, M.A., 1998, Regulation of the sulfate starvation response in Pseudomonas aeruginosa: Role of cysteine biosynthetic intermediates. Microbiology, 144:1375–1386.

    PubMed  CAS  Google Scholar 

  47. Hummerjohann, I, Laudenbach, S., Rétey, J., Leisinger, T., and Kertesz, M.A., 2000, The sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon. J. Bacteriol., 182:2055–2058.

    PubMed  CAS  Google Scholar 

  48. Imperato, T.J., Wong, CG., Chen, L.J., and Bolt, R.J., 1977, Hydrolysis of lithocholate sulfate by Pseudomonas aeruginosa. J. Bacteriol., 130:545–547.

    PubMed  CAS  Google Scholar 

  49. Inoue, H., Inagaki, K., Eriguchi, S.I., Tamura, T., Esaki, N., Soda, K., and Tanaka, H., 1997, Molecular characterization of the mde operon involved in L-methionine catabolism of Pseudomonas putida. J. Bacteriol., 179:3956–3962.

    PubMed  CAS  Google Scholar 

  50. Inoue, H., Inagaki, K., Sugimoto, M., Esaki, N., Soda, K., and Tanaka, H., 1995, Structural analysis of the L-methionine gamma-lyase gene from Pseudomonas putida. J. Biochem., 117:1120–1125.

    PubMed  CAS  Google Scholar 

  51. Jansen, HJ., Hart, CA., Rhodes, J.M., Saunders, J.R., and Smalley, J.W., 1999, A novel mucin-sulphatase activity found in Burkholderia cepacia and Pseudomonas aeruginosa. J. Med. Microbiol., 48:551–557.

    PubMed  CAS  Google Scholar 

  52. Junker, F., Leisinger, T., and Cook, A.M., 1994, 3-Sulphocatechol 2,3-dioxygenase and other dioxygenases (EC 1.13.11.2 and EC 1.14.12.-) in the degradative pathways of 2-amino-benzenesulphonic, benzenesulphonic and 4-toluenesulphonic acids in Alcaligenes sp. strain O-1. Microbiology, 140:1713–1722.

    PubMed  CAS  Google Scholar 

  53. Kahnert, A. and Kertesz, M.A., 2000, Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J. Biol. Chem., 275:31661–31667.

    PubMed  CAS  Google Scholar 

  54. Kahnert, A., Mirleau, P., Wait, R., and Kertesz, M.A., 2002, The LysR-type regulator SftR is involved in soil survival and sulfate ester metabolism in Pseudomonas putida. Environ. Microbiol., 4:225–237.

    PubMed  CAS  Google Scholar 

  55. Kahnert, A., Vermeij, P., Wietek, C., James, P., Leisinger, T., and Kertesz, M.A., 2000, The ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313. J. Bacteriol., 182:2869–2878.

    PubMed  CAS  Google Scholar 

  56. Kang, J.W., Kwon, A.R., Kim, D.H., and Choi, E.C., 2001, Cloning and sequencing of the astA gene encoding arylsulfate sulfotransferase from Salmonella typhimurium. Biol. Pharm. Bull., 24:570–574.

    PubMed  CAS  Google Scholar 

  57. Kertesz, M.A., 2001, Bacterial transporters for sulfate and organosulfur compounds. Res. Microbiol., 152:279–290.

    PubMed  CAS  Google Scholar 

  58. Kertesz, M.A., 1996, Desulfonation of aliphatic sulfonates by Pseudomonas aeruginosa PAO. FEMS Microbiol. Lett., 137:221–225.

    PubMed  CAS  Google Scholar 

  59. Kertesz, M.A., 1999, Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev., 24:135–175.

    Google Scholar 

  60. Kertesz, M.A., Kölbener, P., Stockinger, H., Beil, S., and Cook, A.M., 1994, Desulfonation of linear alkylbenzenesulfonate surfactants and related compounds by bacteria. Appl. Environ. Microbiol., 60:2296–2303.

    PubMed  CAS  Google Scholar 

  61. Kertesz, M.A., Leisinger, T., and Cook, A.M., 1993, Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida, or Staphylococcus aureus. J. Bacteriol., 175:1187–1190.

    PubMed  CAS  Google Scholar 

  62. Kertesz, M.A., Schmidt-Larbig, K., and Wüest, T., 1999, A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J. Bacteriol., 181:1464–1473.

    PubMed  CAS  Google Scholar 

  63. Key, B.D., Howell, R.D., and Griddle, C.S., 1998, Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environ. Sci. Technol., 32:2283–2287.

    CAS  Google Scholar 

  64. King, J.E., Jaouhari, R., and Quinn, J.P., 1997, The role of sulfoacetaldehyde sulfo-lyase in the mineralization of isethionate by an environmental Acinetobacter isolate. Microbiology, 7:2339–2343.

    Google Scholar 

  65. King, J.E. and Quinn, J.P., 1997, Metabolism of sulfoacetate by environmental Aureobacterium sp. and Comamonas acidovorans isolates. Microbiology, 12:3907–3912.

    Google Scholar 

  66. Kopriva, S., Buchert, T., Fritz, G., Suter, M., Benda, R.D., Schunemann, V., Koprivova, A., Schurmann, P., Trautwein, A.X., Kroneck, P.M.H., and Brunold, C., 2002, The presence of an iron-sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J. Biol. Chem., 277:21786–21791.

    PubMed  CAS  Google Scholar 

  67. Kredich, N.M., 1996, Biosynthesis of cysteine. In F.C. Neidhardt, R. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds), Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, 2nd edn, pp. 514–527. ASM Press, Washington.

    Google Scholar 

  68. Kropp, K.G. and Fedorak, P.M., 1998, A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum. Can. J. Microbiol., 44:605–622.

    PubMed  CAS  Google Scholar 

  69. Kwon, A.R., Yun, H.J., and Choi, E.C., 2001, Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsulfate sulfotransferase. Biochem. Biophys. Res. Commun., 285:526–529.

    PubMed  CAS  Google Scholar 

  70. Lee, N.A. and Clark, D.P., 1993, A natural isolate of Pseudomonas maltophila which degrades aromatic sulfonic acids. FEMS Microbiol. Lett., 107:151–155.

    PubMed  CAS  Google Scholar 

  71. Lisa, T.A., Casale, C.H., and Domenech, C.E., 1994, Cholinesterase, acid phosphatase, and phospholipase C of Pseudomonas aeruginosa under hyperosmotic conditions in a high phosphate medium. Curr. Microbiol., 28:71–76.

    CAS  Google Scholar 

  72. Locher, H.H., Leisinger, T., and Cook, A.M., 1991, 4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2. Biochem. J., 274:833–842.

    PubMed  CAS  Google Scholar 

  73. Lucas, J.J., Burchiel, S.W., and Segel, I.H., 1972, Choline sulfatase of Pseudomonas aeruginosa. Arch. Biochem. Biophys., 153:664–672.

    PubMed  CAS  Google Scholar 

  74. Lukatela, G., Krauss, N., Theis, K., Selmer, T., Gieselmann, V., von Figura, K., and Saenger, W., 1998, Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. Biochemistry, 37:3654–3664.

    PubMed  CAS  Google Scholar 

  75. Martelli, H.L. and Souza, S.M., 1970, Biochemistry of sulfonic compounds III. Formation of a two-carbon compound during the oxidation of sulfoacetate by a Pseudomonas strain. Biochim. Biophys. Acta, 208:110–115.

    PubMed  CAS  Google Scholar 

  76. Matcham, G.W.J., Bartholomew, B., Dodgson, K.S., Fitzgerald, J.W., and Payne, W.J., 1977, Stereospecificity and complexity of microbial sulphohydrolases involved in the biodegradation of secondary alkylsulphate detergents. FEMS Microbiol. Lett., 1:197–200.

    CAS  Google Scholar 

  77. McFarland, B.L., 1999, Biodesulfurization. Curr. Opin. Microbiol., 2:257–264.

    PubMed  CAS  Google Scholar 

  78. Miech, C., Dierks, T., Selmer, T., von Figura, K., and Schmidt, B., 1998, Arylsulfatase from Klebsiella pneumoniae carries a formylglycine generated from a serine. J. Biol. Chem., 273:4835–4837.

    PubMed  CAS  Google Scholar 

  79. Monticello, D.J., 2000, Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol., 11:540–546.

    PubMed  CAS  Google Scholar 

  80. Murooka, Y., Ishibashi, K., Yasumoto, M., Sasaki, M., Sugino, H., Azakami, H., and Yamashita, M., 1990, A sulfur-and tyramine-regulated Klebsiella aerogenes operon containing the arylsulfatase (atsA) gene and the atsB gene. J. Bacteriol., 172:2131–2140.

    PubMed  CAS  Google Scholar 

  81. Nelson, J.W, Tredgett, M.W., Sheehan, J.K., Thornton, DJ., Notman, D., and Govan, J.R.W., 1990, Mucinophilic and chemotactic properties of Pseudomonas aeruginosa in relation to pulmonary colonization in cystic fibrosis. Infect. Immun., 58:1489–1495.

    PubMed  CAS  Google Scholar 

  82. Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., dos Santos, V., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Lee, P.C., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J., Timmis, K.N., Dusterhoft, A., Tummler, B., and Fraser, CM., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.

    PubMed  CAS  Google Scholar 

  83. Ochsner, U.A. and Vasil, M.L., 1996, Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: Cycle selection of iron-regulated genes. Proc. Natl. Acad. Sci. USA, 93:4409–4414.

    PubMed  CAS  Google Scholar 

  84. Ohe, T., Ohmoto, T., Kobayashi, Y., Sato, A., and Watanabe, Y., 1990, Metabolism of naph-thalenesulfonic acids by Pseudomonas sp. TA-2. Agric. Biol. Chem., 54:669–675.

    CAS  Google Scholar 

  85. Ohe, T. and Watanabe, Y., 1986, Degradation of 2-naphthylamine-l-sulfonic acid by Pseudomonas strain TA-1. Agric. Biol. Chem., 50:1419–1426

    CAS  Google Scholar 

  86. Ohe, T. and Watanabe, Y., 1988, Microbial degradation of 1,6-naphthalenedisulfonic and 2,6-naphthalenedisulfonic acid by Pseudomonas sp. DS-1. Agric. Biol. Chem., 52:2409–2414.

    CAS  Google Scholar 

  87. Osteras, M., Boncompagni, E., Vincent, N., Poggi, M.C., and Le Rudulier, D., 1998, Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: Choline-O-sulfate is metabolized into glycine betaine. Proc. Natl. Acad. Sci. USA, 95:11394–11399.

    PubMed  CAS  Google Scholar 

  88. Pao, S.S., Paulsen, LT., and Saier, M.H., Jr, 1998, Major facilitator superfamily. Microbiol. Mol. Biol. Rev., 62:1–34.

    PubMed  CAS  Google Scholar 

  89. Payne, W.J. and Faisal, YE., 1963, Bacterial utilization of dodecylsulfate and dodecyl benzenesulfonate. Appl. Microbiol., 11:339–344.

    PubMed  CAS  Google Scholar 

  90. Proksova, M., Augustin, J., and Vrbanova, A., 1997, Enrichment, isolation and characterization of dialkyl sulfosuccinate degrading bacteria Comamonas terrigena N3H and Comamonas terrigena N1C. Folia Microbiol., 42:635–639.

    CAS  Google Scholar 

  91. Quadroni, M., James, P., Dainese-Hatt, P., and Kertesz, M.A., 1999, Proteome mapping, mass spectrometric sequencing and reverse transcriptase-PCR for characterisation of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1. Eur. J. Biochem., 266:986–996.

    PubMed  CAS  Google Scholar 

  92. Quadroni, M., Staudenmann, W., Kertesz, M., and James, P., 1996, Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis: Application to the sulfate-starvation response of Escherichia coli Eur. J. Biochem., 239:773–781.

    CAS  Google Scholar 

  93. Quick, A., Russell, N.J., Hales, S.G., and White, G.F., 1994, Biodegradation of sulphosuccinate: Direct desulphonation of a secondary sulphonate. Microbiology, 140:2991–2998.

    PubMed  CAS  Google Scholar 

  94. Rammler, D.H., Grado, C., and Fowler, L.R., 1964, Sulfur metabolism of Aerobacter aerogenes 1. A repressible sulfatase. Biochemistry, 3:224–230.

    PubMed  CAS  Google Scholar 

  95. Ramphal, R., Carnoy, C., Fievre, S., Michalski, J.C., Houdret, N., Lamblin, G., Strecker, G., and Roussel, P., 1991, Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal-Beta-l-3GlcNac) or Type-2 (Gal-Beta-l-4GlcNac) disaccharide units. Infect. Immun., 59:700–704.

    PubMed  CAS  Google Scholar 

  96. Reichenbecher, W., Kelly, D.P., and Murreil, J.C., 1999, Desulfonation of propanesulfonic acid by Comamonas acidovorans strain P53: Evidence for an alkanesulfonate sulfonatase and an atypical sulfite dehydrogenase. Arch. Microbiol., 172:387–392.

    PubMed  CAS  Google Scholar 

  97. Reichenbecher, W. and Murreil, J.C., 1999, Linear alkanesulfonates as carbon and energy sources for gram-positive and gram-negative bacteria. Arch. Microbiol., 171:430–438.

    PubMed  CAS  Google Scholar 

  98. Rocha, E.P. C., Sekowska, A., and Danchin, A., 2000, Sulphur islands in the Escherichia coli genome: Markers of the cell’s architecture? FEBS Lett., 476:8–11.

    PubMed  CAS  Google Scholar 

  99. Ruff, J., Hitzler, T., Rein, U., Ritter, A., and Cook, A.M., 1999, Bioavailability of water-polluting sulfonoaromatic compounds. Appl Microbiol. Biotechnol., 52:446–450.

    PubMed  CAS  Google Scholar 

  100. Satishchandran, C., Hickman, Y.N., and Markham, G.D., 1992, Characterization of the phosphorylated enzyme intermediate formed in the adenosine 5′-phosphosulfate kinase reaction. Biochemistry, 31:11684–11688.

    PubMed  CAS  Google Scholar 

  101. Schleheck, D., Dong, W.B., Denger, K., Heinzle, E., and Cook, A.M., 2000, An alpha-proteobacterium converts linear alkylbenzenesulfonate surfactants into sulfophenylcarboxylates and linear alkyldiphenyletherdisulfonate surfactants into sulfodiphenylethercar-boxylates. Appl. Environ. Microbiol., 66:1911–1916.

    PubMed  CAS  Google Scholar 

  102. Schulz, S., Dong, W.B., Groth, U., and Cook, A.M., 2000, Enantiomeric degradation of 2-(4-sulfophenyl) butyrate via 4-sulfocatechol in Delftia acidovorans SPB1. Appl. Environ. Microbiol., 66:1905–1910.

    PubMed  CAS  Google Scholar 

  103. Seitz, A.P., Leadbetter, E.R., and Godchaux, W., 1993, Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans. Arch. Microbiol., 159:440–444.

    CAS  Google Scholar 

  104. Shan, X.Q., Chen, B., Zhang, T.H., Li, F.L., Wen, B., and Qian, J., 1997, Relationship between sulfur speciation in soils and plant availability. Sci. Total Environ., 199:237–246.

    CAS  Google Scholar 

  105. Shaw, D.J., Dodgson, K.S., and White, G.F., 1980, Substrate specificity and other properties of the inducible S3 secondary alkylsulphohydrolase purified from the detergent-degrading bacterium Pseudomonas C12B. Biochem. J., 187:181–196.

    PubMed  CAS  Google Scholar 

  106. Shimamoto, G. and Berk, R.S., 1979, Catabolism of taurine in Pseudomonas aeruginosa. Biochim. Biophys. Acta, 569:287–292.

    PubMed  CAS  Google Scholar 

  107. Shimamoto, G. and Berk, R.S., 1980, Taurine catabolism II. Biochemical and genetic evidence for sulfoacetaldehyde sulfolyase involvement. Biochim. Biophys. Acta, 632:121–130.

    PubMed  CAS  Google Scholar 

  108. Smith, L.T., Pocard, J.A., Bernard, T., and Le Rudulier, D., 1988, Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol., 170:3142–3149.

    PubMed  CAS  Google Scholar 

  109. Stolz, A., 2001, Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol., 56:69–80.

    PubMed  CAS  Google Scholar 

  110. Stolz, A., 1999, Degradation of substituted naphthalenesulfonic acids by Sphingomonas xenophaga BN6. J. Ind. Microbiol. Biotechnol., 23:391–399.

    PubMed  CAS  Google Scholar 

  111. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufhagle, W.O., Kowalik, DJ., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D, Wong, G.K.S., Wu, Z., Paulsen, LT., Reizer, J., Saier, M.H., Hancock, R.E.W, Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406:959–964.

    PubMed  CAS  Google Scholar 

  112. Strous, G.J. and Dekker, J., 1992, Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol., 27:57–92.

    PubMed  CAS  Google Scholar 

  113. Szameit, C., Miech, C., Balleininger, M., Schmidt, B., von Figura, K., and Dierks, T., 1999, The iron sulfur protein AtsB is required for posttranslational formation of formylglycine in the Klebsiella sulfatase. J. Biol. Chem., 274:15375–15381.

    PubMed  CAS  Google Scholar 

  114. Tazuke, Y., Matsuda, K., Adachi, K., and Tsukada, Y., 1998, Purification and properties of a novel sulfatase from Pseudomonas testosteroni that hydrolyzed 3 beta-hydroxy-5-cholenoic acid 3-sulfate. Biosci. Biotechnol. Biochem., 62:1739–1744.

    PubMed  CAS  Google Scholar 

  115. Tazuke, Y., Matsuda, K., Adachi, K., and Tsukada, Y., 1994, Purification and properties of bile acid sulfate sulfatase from Pseudomonas testosteroni. Biosci. Biotechnol. Biochem., 58:889–894.

    PubMed  CAS  Google Scholar 

  116. Tazuke, Y., Matsuda, K., Okada, S., and Tsukada, Y., 1992, A novel sulfatase from Pseudomonas testosteroni hydrolyzing lithocholic acid sulfate. Biosci. Biotechnol. Biochem., 56:1584–1588.

    PubMed  CAS  Google Scholar 

  117. Thomas, O.R.T., Matts, P.J., and White, G.F., 1988, Localization of electron microscopy of alkylsulfatases in bacterial cells. J. Gen. Microbiol., 134:1229–1236.

    CAS  Google Scholar 

  118. Thysse, G.J.E. and Wanders, T.H., 1972, Degradation of n-alkane-1-sulfonates by Pseudomonas. Antonie van Leeuwenhoek, 38:53–63.

    CAS  Google Scholar 

  119. Thysse, G.J.E. and Wanders, T.H., 1974, Initial steps in the degradation of n-alkane-1-sulphonates by Pseudomonas. Antonie van Leeuwenhoek, 40:25–37.

    PubMed  CAS  Google Scholar 

  120. Tralau, T., Cook, A.M., and Ruff, J., 2001, Map of the IncPl beta plasmid pTSA encoding the widespread genes (tsa) for P-toluenesulfonate degradation in Comamonas testosteroniT-2. Appl. Environ. Microbiol., 67:1508–1516.

    PubMed  CAS  Google Scholar 

  121. Tralau, T., Mampel, J., Cook, A.M., and Ruff, J., 2003, Characterization of TsaR, an oxygensensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol., 69:2298–2305.

    PubMed  CAS  Google Scholar 

  122. Tralau, T., Wietek, C., and Kertesz, M.A., 2003, Desulfonation of aliphatic and aromatic sulfonates in Pseudomonas putida S-313 by a sulfate starvation-induced monooxygenase system, unpublished results.

    Google Scholar 

  123. Tsai, H.H., Hart, CA., and Rhodes, J.M., 1991, Production of mucin degrading sulphatases and glycosidases by Bacteroides thetaiotaomicron. Lett. Appl Microbiol., 13:97–101.

    CAS  Google Scholar 

  124. Vairavamurthy, M.A., Maletic, D., Wang, S.K., Manowitz, B., Eglinton, T., and Lyons, T., 1997, Characterization of sulfur-containing functional groups in sedimentary humic substances by X-ray absorption near-edge structure spectroscopy. Energy Fuels, 11:546–553.

    CAS  Google Scholar 

  125. Vairavamurthy, M.A., Zhou, W., Eglinton, T., and Manowitz, B., 1994, Sulfonates: A new class of organic sulfur compounds in marine sediments. Geochim. Cosmochim. Acta, 58:4681–4687.

    CAS  Google Scholar 

  126. van der Ploeg, J.R., Cummings, N.J., Leisinger, T., and Connerton, LE, 1998, Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology, 144:2555–2561

    PubMed  Google Scholar 

  127. van der Ploeg, J.R., Eichhorn, E., and Leisinger, T., 2001, Sulfonate-sulfur metabolism and its regulation in Escherichia coli Arch. Microbiol., 176:1–8.

    Google Scholar 

  128. van der Ploeg, J.R., Iwanicka-Nowicka, R., Bykowski, T., Hryniewicz, M., and Leisinger, T., 1999, The Cbl-regulated ssuEADCB gene cluster is required for aliphatic sulfonate-sulfur utilization in Escherichia coli J. Biol. Chem., 174:29358–29365

    Google Scholar 

  129. van der Ploeg, J.R., Iwanicka-Nowicka, R., Kertesz, M.A., Leisinger, T., and Hryniewicz, M.M., 1997, Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli J. Bacteriol., 179:7671–7678.

    PubMed  Google Scholar 

  130. Vermeij, P. and Kertesz, M.A., 1999, Pathways of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol., 181:5833–5837.

    PubMed  CAS  Google Scholar 

  131. Vermeij, P., Wietek, C., Kahnert, A., Wüest, T., and Kertesz, M.A., 1999, Genetic organization of sulfur-controlled aryl desulfonation in Pseudomonas putida S-313. Mol. Microbiol., 32:913–926.

    PubMed  CAS  Google Scholar 

  132. von Figura, K., Schmidt, B., Selmer, T., and Dierks, T., 1998, A novel protein modification generating an aldehyde group in sulfatases: Its role in catalysis and disease. Bioessays, 20:505–510.

    Google Scholar 

  133. Watwood, M.E., Fitzgerald, J.W., and Gosz, J.R., 1986, Sulfur processing in forest soil and litter along an elevational and vegetative gradient. Can. J. For. Res., 16:689–695.

    CAS  Google Scholar 

  134. Wehnert, M., Günther, E., and Herrmann, H., 1975, Vitamin B12-dependent methionine biosynthesis in Pseudomonas aeruginosa. Z. Allg. Mikrobiol., 15:281–286.

    PubMed  CAS  Google Scholar 

  135. White, G.F., Russell, N.J., and Day, M.J., 1985, A survey of sodium dodecyl-sulfate (SDS) resistance and alkylsulfatase production in bacteria from clean and polluted river sites. Environ. Poll. Series A, 37:1–11.

    CAS  Google Scholar 

  136. Wright, D.P., Knight, CG., Parker, S.G., Christie, D.L., and Roberton, A.M., 2000, Cloning of a mucin-desulfating sulfatase gene from Prevotella strain RS2 and its expression using a Bacteroides recombinant system. J. Bacteriol., 182:3002–3007.

    PubMed  CAS  Google Scholar 

  137. Zhao, Q.X. and Poole, K., 2000, A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes. FEMS Microbiol. Lett., 184:127–132.

    PubMed  CAS  Google Scholar 

  138. Zürrer, D., Cook, A.M., and Leisinger, T., 1987, Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids. Appl. Environ. Microbiol., 53:1459–1463.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kertesz, M.A. (2004). Metabolism of Sulphur-Containing Organic Compounds. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics