Skip to main content

Lipopolysaccharides of Pseudomonas aeruginosa

  • Chapter
Pseudomonas

Abstract

The lipopolysaccharide (LPS) of Pseudomonas aeruginosa is a major constituent of the outer leaflet of the outer membrane of the Gram-negative bacterial cell wall. Due to its surface location, LPS plays a critical role in the structural integrity of the outer membrane and in the interaction of the bacterium with its environment. In the human host, LPS shed by bacteria is usually bound by LPS-binding protein106, 178, and is transferred to the CD14 receptor198 on macrophages inducing the release of proinflammatory cytokines including tumor necrosis factor-α, interleukin 1 (IL-1), IL-6, IL-8 and IL-10115. In addition, it has been shown that LPS of bacteria interacts with Toll-like receptor 4 on host membranes and induces the release of cytokines147. Properly regulated release of these inflammatory mediators is part of innate immunity against bacterial infections. However, excessive stimulation of the immune systems by LPS can result in septic shock and even death115. Therefore, a better understanding of the biosynthesis of P. aeruginosa LPS will provide the means to develop methods to block the interactions between LPS and host receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akatova, N.S. and Smirnova, N.E., 1982, Serological classification of Pseudomonas aeruginosa. Zh. Mikrobiol. Epidemiol Immunobiol, 7:87–91.

    Google Scholar 

  2. Alexander, D.C. and Valvano, M.A., 1994, Role of the rfe gene in the biosynthesis of the Escherichia coli 07-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J. Bacteriol, 176:7079–7084.

    PubMed  CAS  Google Scholar 

  3. Alpern, E.R., Alessandrini, E.A., McGowan, K.L., Bell, L.M., and Shaw, K.N., 2001, Serotype prevalence of occult pneumococcal bacteremia. Pediatrics, 108:E23.

    Article  PubMed  CAS  Google Scholar 

  4. Amer, A.O. and Valvano, M.A., 2001, Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP-N-acetylglucosamine. Microbiology, 147:3015–3025.

    PubMed  CAS  Google Scholar 

  5. Amer, A.O. and Valvano, M.A., 2002, Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. Microbiology, 148:571–582.

    PubMed  CAS  Google Scholar 

  6. Amor, P.A. and Whitfield, C., 1997, Molecular and functional analysis of genes required for expression of group IB K antigens in Escherichia coli: Characterization of the his-region containing gene clusters for multiple cell-surface polysaccharides. Mol. Microbiol., 26:145–161.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson, M.S., Robertson, A.D., Macher, I., and Raetz, C.R., 1988, Biosynthesis of lipid A in Escherichia coli: Identification of UDP-3-O-[(R)-3-hydroxymyristoyl]-α-D-glucosamine as a precursor of UDP-N2,O3-bis[(R)-3-hydroxymyristoyl]-α-D-glucosamine. Biochemistry, 27:1908–1917.

    Article  PubMed  CAS  Google Scholar 

  8. Babinski, K.J., Ribeiro, A.A., and Raetz, C.R., 2002, The Escherichia coli gene encoding the UDP-2,3-diacylglucosamine pyrophosphatase of lipid A biosynthesis. J. Biol. Chem., 277:25937–25946.

    Article  PubMed  CAS  Google Scholar 

  9. Bailey, M.J., Hughes, C., and Koronakis, V, 2000, In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element. Mol. Gen. Genet, 262:1052–1059.

    Article  PubMed  CAS  Google Scholar 

  10. Bailey, M.J., Hughes, C., and Koronakis, V, 1997, RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. Mol. Microbiol., 26:845–851.

    Article  PubMed  CAS  Google Scholar 

  11. Bastin, D.A., Stevenson, G., Brown, P.K., Haase, A., and Reeves, P.R., 1993, Repeat unit poly-saccharides of bacteria: A model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol. Microbiol., 7:725–734.

    Article  PubMed  CAS  Google Scholar 

  12. Batchelor, R.A., Alifano, P., Biffali, E., Hull, S.I., and Hull, R.A., 1992, Nucleotide sequences of the genes regulating O-polysaccharide antigen chain length (rol) from Escherichia coli and Salmonella typhimurium: Protein homology and functional complementation. J. Bacteriol, 174:5228–5236.

    PubMed  CAS  Google Scholar 

  13. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, EX., 2002, The Pfam protein families database. Nucleic Acids Res., 30:276–280.

    Article  PubMed  CAS  Google Scholar 

  14. Bateman, A., Birney, E., Durbin, R., Eddy, S.R., Howe, K.L., and Sonnhammer, E.L., 2000, The Pfam protein families database. Nucleic Acids Res., 28:263–266.

    Article  PubMed  CAS  Google Scholar 

  15. Beall, B. and Lutkenhaus, J., 1987, Sequence analysis, transcriptional organization, and inser-tional mutagenesis of the envA gene of Escherichia coli. J. Bacteriol., 169:5408–5415.

    PubMed  CAS  Google Scholar 

  16. Beckmann, F., Moll, H., Jäger, K.E., and Zähringer, U., 1995, Preliminary communication 7-O-carbamoyl-L-glycero-D-manno-heptose: A new core constituent in the lipopolysaccharide of Pseudomonas aeruginosa. Carbohydr. Res., 267:C3–C7.

    Article  PubMed  CAS  Google Scholar 

  17. Bélanger, M., Burrows, L.L., and Lam, J.S., 1999, Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. Microbiology, 145:3505–3521.

    PubMed  Google Scholar 

  18. Bert, F. and Lambert-Zechovsky, N., 1996, Comparative distribution of resistance patterns and serotypes in Pseudomonas aeruginosa isolates from intensive care units and other wards. J. Antimicrob. Chemother., 37:809–813.

    Article  PubMed  CAS  Google Scholar 

  19. Beveridge, T.J., Makin, S.A., Kadurugamuwa, J.L., and Li, Z., 1997, Interactions between biofilms and the environment. FEMS Microbiol. Rev., 20:291–303.

    Article  PubMed  CAS  Google Scholar 

  20. Bhat, R., Marx, A., Galanos, C., and Conrad, R.S., 1990, Structural studies of lipid A from Pseudomonas aeruginosa PAO1: Occurrence of 4-amino-4-deoxyarabinose. J. Bacteriol, 172:6631–6636.

    PubMed  CAS  Google Scholar 

  21. Blankenfeldt, W., Asuncion, M., Lam, J.S., and Naismith, J.H., 2000, The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBOJ., 19:6652–6663.

    Article  CAS  Google Scholar 

  22. Blankenfeldt, W., Giraud, M.F., Leonard, G., Rahim, R., Creuzenet, C., Lam, J.S., and Naismith, J.H., 2000, The purification, crystallization and preliminary structural characterization of glucose-1-phosphate thymidylyltransferase (RmlA), the first enzyme of the dTDP-L-rhamnose synthesis pathway from Pseudomonas aeruginosa. Acta Crystallogr. D. Biol. Crystallogr., 56:1501–1504.

    Article  PubMed  CAS  Google Scholar 

  23. Brodsky, I.E., Ernst, R.K., Miller, S.I., and Falkow, S., 2002, mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. J. Bacteriol., 184:3203–3213.

    Article  PubMed  CAS  Google Scholar 

  24. Brozek, K.A. and Raetz, C.R., 1990, Biosynthesis of lipid A in Escherichia coli. Acyl carrier protein-dependent incorporation of laurate and myristate. J. Biol. Chem., 265:15410–15417.

    PubMed  CAS  Google Scholar 

  25. Bunnell, E., Lynn, M., Habet, K., Neumann, A., Perdomo, CA., Friedhoff, L.T., Rogers, S.L., and Parrillo, J.E., 2000, A lipid A analog, E5531, blocks the endotoxin response in human volunteers with experimental endotoxemia. Crit. Care Med., 28:2713–2720.

    Article  PubMed  CAS  Google Scholar 

  26. Burrows, L.L., Charter, D.F., and Lam, J.S., 1996, Molecular characterization of the Pseudomonas aeruginosa serotype 05 (PAO1) B-band lipopolysaccharide gene cluster. Mol. Microbiol., 22:481–495.

    Article  PubMed  CAS  Google Scholar 

  27. Burrows, L.L., Chow, D., and Lam, J.S., 1997, Pseudomonas aeruginosa B-band O-antigen chain length is modulated by Wzz (Rol). J. Bacteriol., 179:1482–1489.

    PubMed  CAS  Google Scholar 

  28. Burrows, L.L. and Lam, J.S., 1999, Effect of wzx (rfbX) mutations on A-band and B-band lipopolysaccharide biosynthesis in Pseudomonas aeruginosa 05. J. Bacteriol., 181:973–980.

    PubMed  CAS  Google Scholar 

  29. Burrows, L.L., Urbanic, R.V, and Lam, J.S., 2000, Functional conservation of the polysac-charide biosynthetic protein WbpM and its homologues in Pseudomonas aeruginosa and other medically significant bacteria. Infect. Immun., 68:931–936.

    Article  PubMed  CAS  Google Scholar 

  30. Bystrova, O.V, Shashkov, A.S., Kocharova, N.A., Knirel, Y.A., Lindner, B., Zähringer, U., and Pier, G.B., 2002, Structural studies on the core and the O-polysaccharide repeating unit of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide. Eur. J. Biochem., 269:2194–2203.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, M.H., Steiner, M.G., de Laszlo, S.E., Patchett, A.A., Anderson, M.S., Hyland, S.A., Onishi, H.R., Silver, L.L., and Raetz, C.R., 1999, Carbohydroxamido-oxazolidines: Antibacterial agents that target lipid A biosynthesis. Bioorg. Med. Chem. Lett., 9:313–318.

    Article  PubMed  CAS  Google Scholar 

  32. Clementz, T., Bednarski, J.J., and Raetz, C.R., 1996, Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J. Biol. Chem., 271:12095–12102.

    Article  PubMed  CAS  Google Scholar 

  33. Coimbra, R.S., Grimont, F., and Grimont, P.A., 1999, Identification of Shigella serotypes by restriction of amplified O-antigen gene cluster. Res. Microbiol., 150:543–553.

    Article  PubMed  CAS  Google Scholar 

  34. Coyne, M.J., Jr., Russell, K.S., Coyle, C.L., and Goldberg, J.B., 1994, The Pseudomonas aeruginosa algC gene encodes phosphoglucomutase, required for the synthesis of a complete lipopolysaccharide core. J. Bacteriol., 176:3500–3507.

    PubMed  CAS  Google Scholar 

  35. Creuzenet, C., Bélanger, M., Wakarchuk, W.W., and Lam, J.S., 2000, Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype 06. J. Biol. Chem., 275:19060–19067.

    Article  PubMed  CAS  Google Scholar 

  36. Creuzenet, C. and Lam, J.S., 2001, Topological and functional characterization of WbpM, an inner membrane UDP-GlcNAc C6 dehydratase essential for lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol., 41:1295–1310.

    Article  PubMed  CAS  Google Scholar 

  37. Creuzenet, C., Schur, M.J., Li, J., Wakarchuk, W.W., and Lam, J.S., 2000, FlaAl, a new bifunctional UDP-GlcNAc C6 Dehydratase/ C4 reductase from Helicobacter pylori. J. Biol. Chem., 275:34873–34880.

    Article  PubMed  CAS  Google Scholar 

  38. Creuzenet, C., Urbanic, R.V, and Lam, J.S., 2002, Structure-function studies of two novel UDP-GlcNAc C6 dehydratases/C4 reductases. Variation from the SYK dogma. J. Biol. Chem., 277:26769–26778.

    Article  PubMed  CAS  Google Scholar 

  39. Daniels, C., Griffiths, C., Cowles, B., and Lam, J.S., 2002, Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ. Microbiol., 4:883–897.

    Article  PubMed  CAS  Google Scholar 

  40. Daniels, C., Vindurampulle, C., and Morona, R., 1998, Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol. Microbiol., 28:1211–1222.

    Article  PubMed  CAS  Google Scholar 

  41. de Kievit, T.R., Dasgupta, T., Schweizer, H., and Lam, J.S., 1995, Molecular cloning and characterization of the rfc gene of Pseudomonas aeruginosa (serotype 05). Mol. Microbiol., 16:565–574.

    Article  PubMed  Google Scholar 

  42. de Kievit, T.R. and Lam, J.S., 1997, Isolation and characterization of two genes, waaC (rfaC) and waaF (rfaF), involved in Pseudomonas aeruginosa serotype 05 inner-core biosynthesis. J. Bacteriol., 179:3451–3457.

    PubMed  Google Scholar 

  43. de Kievit, T.R. and Lam, J.S., 1994, Monoclonal antibodies that distinguish inner core, outer core, and lipid A regions of Pseudomonas aeruginosa lipopolysaccharide. J. Bacteriol., 176:7129–7139.

    PubMed  Google Scholar 

  44. de Kievit, T.R., Staples, T., and Lam, J.S., 1997, Pseudomonas aeruginosa rfc genes of serotypes 02 and 05 could complement O-polymerase-deficient semi-rough mutants of either serotype. FEMS Microbiol. Lett., 147:251–257.

    Article  PubMed  Google Scholar 

  45. Dean, C.R., Datta, A., Carlson, R.W., and Goldberg, J.B., 2002, WbjA adds glucose to complete the O-antigen trisaccharide repeating unit of the lipopolysaccharide of Pseudomonas aeruginosa serogroup Oll. J. Bacteriol., 184:323–326.

    Article  PubMed  CAS  Google Scholar 

  46. Dean, C.R., Franklund, C.V, Retief, J.D., Coyne, M.J., Jr., Hatano, K., Evans, DJ., Pier, G.B., and Goldberg, J.B., 1999, Characterization of the serogroup O11 O-antigen locus of Pseudomonas aeruginosa PA103. J. Bacteriol., 181:4275–4284

    PubMed  CAS  Google Scholar 

  47. Dean, C.R. and Goldberg, J.B., 2002, Pseudomonas aeruginosa galU is required for a complete lipopolysaccharide core and repairs a secondary mutation in a PA103 (serogroup O11) wbpM mutant. FEMS Microbiol. Lett., 210:277–283.

    Article  PubMed  CAS  Google Scholar 

  48. Dean, C.R. and Goldberg, J.B., 2000, The wbpM gene in Pseudomonas aeruginosa serogroup 017 resides on a cryptic copy of the serogroup 011 O antigen gene locus. FEMS Microbiol. Lett., 187:59–63.

    Article  PubMed  CAS  Google Scholar 

  49. de Lancey Pulcini, E. and Camper, A., 2002, Proteomic analysis of variations in protein expression in Pseudomonas aeruginosa during initial adhesion. Abstr. Q-256. In Abstracts of the 102nd General Meeting of the American Society for Microbiology 2002. American Society for Microbiology, Washington, DC.

    Google Scholar 

  50. DiGiandomenico, A., Matewish, M.J., Bisaillon, A., Stehle, J.R., Lam, J.S., and Castric, P., 2002, Glycosylation of Pseudomonas aeruginosa 1244 pilin: Glycan substrate specificity. Mol. Microbiol., 46:519–530.

    Article  PubMed  CAS  Google Scholar 

  51. Doerrler, W.T. and Raetz, C.R., 2002, ATPase activity of the MsbA lipid flippase of Escherichia coli. J. Biol. Chem., 277:36697–36705.

    Article  PubMed  CAS  Google Scholar 

  52. Doerrler, W.T., Reedy, M.C., and Raetz, C.R., 2001, An Escherichia coli mutant defective in lipid export. J. Biol. Chem., 276:11461–11464.

    Article  PubMed  CAS  Google Scholar 

  53. Dotson, G.D., Kaltashov, I.A., Cotter, R.J., and Raetz, C.R., 1998, Expression cloning of a Pseudomonas gene encoding a hydroxydecanoyl-acyl carrier protein-dependent UDP-GlcNAc acyltransferase. J. Bacteriol., 180:330–337.

    PubMed  CAS  Google Scholar 

  54. Drewry, D.T., Symes, K.C., Gray, G.W., and Wilkinson, S.G., 1975, Studies of polysaccharide fractions from the lipopolysaccharide of Pseudomonas aeruginosa N.C.T.C. 1999. Biochem. J., 149:93–106.

    PubMed  CAS  Google Scholar 

  55. Eagon, R.G., Simmons, G.P., and Carson, K.J., 1965, Evidence for the presence of ash and fïva-lent metals in the cell wall of Pseudomonas aeruginosa. Can. J. Microbiol., 11:1041–1042.

    Article  PubMed  CAS  Google Scholar 

  56. Ernst, R.K., Yi, E.C., Guo, L., Lim, K.B., Burns, J.L., Hackett, M, and Miller, S.I., 1999, Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science, 286:1561–1565.

    Article  PubMed  CAS  Google Scholar 

  57. Farmer, J.J., 3rd, Weinstein, R.A., Zierdt, C.H., and Brokopp, CD., 1982, Hospital outbreaks caused by Pseudomonas aeruginosa: Importance of serogroup Oil. J. Clin. Microbiol., 16:266–270.

    PubMed  Google Scholar 

  58. Fisher, M.W, Devlin, H.B., and Gnabasik, F.J., 1969, New immunotype schema for Pseudomonas aeruginosa based on protective antigens. J. Bacteriol., 98:835–836.

    PubMed  CAS  Google Scholar 

  59. Fomsgaard, A., Hoiby, N., Shand, G.H., Conrad, R.S., and Galanos, C., 1988, Longitudinal study of antibody response to lipopolysaccharides during chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. Infect Immun., 56:2270–2278.

    PubMed  CAS  Google Scholar 

  60. Fournier, J.M., Vann, WE, and Karakawa, W.W., 1984, Purification and characterization of Staphylococcus aureus type 8 capsular polysaccharide. Infect. Immun., 45:87–93.

    PubMed  CAS  Google Scholar 

  61. Garrett, T.A., Kadrmas, J.L., and Raetz, C.R., 1997, Identification of the gene encoding the Escherichia coli lipid A 4′-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J. Biol. Chem., 272:21855–21864.

    Article  PubMed  CAS  Google Scholar 

  62. Giraud, M.F. and Naismith, J.H., 2000, The rhamnose pathway. Curr. Opin. Struct. Biol., 10:687–696.

    Article  PubMed  CAS  Google Scholar 

  63. Giwercman, B., Fomsgaard, A., Mansa, B., and Høiby, N., 1992, Polyacrylamide gel electrophoresis analysis of lipopolysaccharide from Pseudomonas aeruginosa growing planktonically and as biofilm. FEMS Microbiol. Immunol., 4:225–229.

    Article  PubMed  CAS  Google Scholar 

  64. Goldberg, J.B., Hatano, K., and Pier, G.B., 1993, Synthesis of lipopolysaccharide O side chains by Pseudomonas aeruginosa PAO1 requires the enzyme phosphomannomutase. J. Bacteriol, 175:1605–1611.

    PubMed  CAS  Google Scholar 

  65. Goldman, R., Kohlbrenner, W., Lartey, P., and Pernet, A., 1987, Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature, 329:162–164.

    Article  PubMed  CAS  Google Scholar 

  66. Goldman, R.C., Doran, C.C., Kadam, S.K., and Capobianco, J.O., 1988, Lipid A precursor from Pseudomonas aeruginosa is completely acylated prior to addition of 3-deoxy-D-manno-octulosonate. J. Biol. Chem., 263:5217–5223.

    PubMed  CAS  Google Scholar 

  67. Graninger, M, Nidetzky, B., Heinrichs, D.E., Whitfield, C., and Messner, P., 1999, Characterization of dTDP-4-dehydrorhamnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J. Biol. Chem., 274:25069–25077.

    Article  PubMed  CAS  Google Scholar 

  68. Gray, G.W. and Wilkinson, S.G., 1965, The effect of ethylenediaminetetra-acetic acid on the cell walls of some gram-negative bacteria. J. Gen. Microbiol., 39:385–399.

    Article  PubMed  CAS  Google Scholar 

  69. Groisman, E.A., 2001, The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol., 183:1835–1842.

    Article  PubMed  CAS  Google Scholar 

  70. Habs, I., 1957, Untersuchungen uber die O-Antigene von Pseudomonas aeruginosa. Z Hyg. Infekt.-Kr., 144:218–228.

    Article  CAS  Google Scholar 

  71. Hammond, S.M., Claesson, A., Jansson, A.M., Larsson, L.G., Pring, B.G., Town, CM., and Ekstrom, B., 1987, A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature, 327:730–732.

    Article  PubMed  CAS  Google Scholar 

  72. Hancock, R.E., Mutharia, L.M., Chan, L., Darveau, R.P., Speert, D.P., and Pier, G.B., 1983, Pseudomonas aeruginosa isolates from patients with cystic fibrosis: A class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect. Immun., 42:170–177.

    PubMed  CAS  Google Scholar 

  73. Haseley, S.R., Holst, O., and Brade, H., 1997, Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter haemolyticus strain ATCC 17906. Eur. J. Biochem., 244:761–766.

    Article  PubMed  CAS  Google Scholar 

  74. Hashimoto, Y., Li, N., Yokoyama, H., and Ezaki, T., 1993, Complete nucleotide sequence and molecular characterization of ViaB region encoding Vi antigen in Salmonella typhi. J. Bacteriol., 175:4456–4465.

    PubMed  CAS  Google Scholar 

  75. Heinrichs, D.E., Monteiro, M.A., Perry, M.B., and Whitfield, C., 1998, The assembly system for the lipopolysaccharide R2 core-type of Escherichia coli is a hybrid of those found in Escherichia coli K-12 and Salmonella enterica. Structure and function of the R2 WaaK and WaaL homologs. J. Biol. Chem., 273:8849–8859.

    Article  PubMed  CAS  Google Scholar 

  76. Hobbs, M. and Reeves, PR., 1994, The JUMPstart sequence: A 39 bp element common to several polysaccharide gene clusters. Mol. Microbiol., 12:855–856.

    Article  PubMed  CAS  Google Scholar 

  77. Homma, Y.J., 1976, A new antigenic scheme and live cell slide agglutination procedure for the intrasubspecific, serologic classification of Pseudomonas aeruginosa. Jap. J. Exp. Med., 46:329–336.

    Google Scholar 

  78. Hyland, S.A., Eveland, S.S., and Anderson, M.S., 1997, Cloning, expression, and purification of UDP-S-O-acyl-GlcNAc deacetylase from Pseudomonas aeruginosa: A metalloamidase of the lipid A biosynthesis pathway. J. Bacteriol., 179:2029–2037.

    PubMed  CAS  Google Scholar 

  79. Jackman, J.E., Fierke, CA., Tumey, L.N., Pirrung, M., Uchiyama, T., Tahir, S.H., Hindsgaul, O., and Raetz, C.R., 2000, Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem., 275:11002–11009.

    Article  PubMed  CAS  Google Scholar 

  80. Jackman, J.E., Raetz, C.R., and Fierke, CA., 2001, Site-directed mutagenesis of the bacterial metalloamidase UDP-(3-O-acy1)-N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site. Biochemistry, 40:514–523.

    Article  PubMed  CAS  Google Scholar 

  81. Jackman, J.E., Raetz, C.R., and Fierke, CA., 1999, UDP-3-0-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry, 38:1902–1911.

    Article  PubMed  CAS  Google Scholar 

  82. Jiang, S.M., Wang, L., and Reeves, P.R., 2001, Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun., 69:1244–1255.

    Article  PubMed  CAS  Google Scholar 

  83. Jones, C., Currie, F., and Forster, M.J., 1991, N.m.r. and conformational analysis of the capsular polysaccharide from Streptococcus pneumoniae type 4. Carbohydr. Res., 221:95–121.

    Article  PubMed  CAS  Google Scholar 

  84. Jörnvall, H., 1999, Multiplicity and complexity of SDR and MDR enzymes. Adv. Exp. Med. Biol., 463:359–364.

    Article  PubMed  Google Scholar 

  85. Jörnvall, H., Hoog, J.O., and Persson, B., 1999, SDR and MDR: Completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett., 445:261–264.

    Article  PubMed  Google Scholar 

  86. Kallberg, Y., Oppermann, U., Jörnvall, H. and Persson, B., 2002, Short-chain dehydroge-nases/reductases (SDRs). Eur. J. Biochem., 269:4409–4417.

    Article  PubMed  CAS  Google Scholar 

  87. Karunaratne, D.N., Richards, J.C., and Hancock, R.E., 1992, Characterization of lipid A from Pseudomonas aeruginosa O-antigenic B band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis. Arch. Biochem. Biophys., 299:368–376.

    Article  PubMed  CAS  Google Scholar 

  88. Kasper, D.L., Weintraub, A., Lindberg, A.A., and Lonngren, J., 1983, Capsular polysaccha-rides and lipopolysaccharides from two Bacteroides fragilis reference strains: Chemical and immunochemical characterization. J. Bacteriol., 153:991–997.

    PubMed  CAS  Google Scholar 

  89. Kelly, T.M., Stachula, S.A., Raetz, C.R., and Anderson, M.S., 1993, The firA gene of Escherichia coli encodes UDP-3-O-(R-3-hydroxymyristoyl)-glucosamine N-acyltransferase. The third step of endotoxin biosynthesis. J. Biol. Chem., 268:19866–19874.

    PubMed  CAS  Google Scholar 

  90. Kline, T., Andersen, N.H., Harwood, E.A., Bowman, J., Malanda, A., Endsley, S., Erwin, A.L., Doyle, M., Fong, S., Harris, A.L., Mendelsohn, B., Mdluli, K., Raetz, C.R., Stover, C.K., Witte, PR., Yabannavar, A., and Zhu, S., 2002, Potent, novel in vitro inhibitors of the Pseudomonas aeruginosa deacetylase LpxC J. Med. Chem., 45:3112–3129

    Article  PubMed  CAS  Google Scholar 

  91. Kneidinger, B., Larocque, S., Brisson, J.R., Cadotte, N., and Lam, J.S., 2003, Biosynthesis of 2-acetamido-2,6-dideoxy-L-hexoses in bacteria follows a pattern distinct from those of the pathways of 6-deoxy-L-hexoses. Biochem. J., 371:989–995.

    Article  PubMed  CAS  Google Scholar 

  92. Kneidinger, B., Marolda, C., Graninger, M., Zamyatina, A., McArthur, F., Kosma, P., Valvano, M.A., and Messner, P., 2002, Biosynthesis pathway of ADP-L-glycero-β-D-manno-heptose in Escherichia coli. J. Bacteriol., 184:363–369.

    Article  PubMed  CAS  Google Scholar 

  93. Kneidinger, B., O’Riordan, K., Li, J., Brisson, J.R., Lee, J.C., and Lam, J.S., 2003, Three highly conserved proteins catalyze the conversion of UDP-N-acetyl-D-glucosamine to precursors for the biosynthesis of O antigen in Pseudomonas aeruginosa 011 and capsule in Staphylococcus aureus type 5. Implications for the UDP-N-acetyl-L-fucosamine biosynthetic pathway. J. Biol. Chem., 278:3615–3627.

    Google Scholar 

  94. Knirel, Y.A., 1990, Polysaccharide antigens of Pseudomonas aeruginosa. Crit. Rev. Microbiol., 17:273–304.

    Article  PubMed  CAS  Google Scholar 

  95. Knirel, Y.A., Bystrova, O.V, Shashkov, A.S., Lindner, B., Kocharova, N.A., Senchenkova, S.N., Moll, H., Zähringer, U., Hatano, K., and Pier, G.B., 2001, Structural analysis of the lipopolysaccharide core of a rough, cystic fibrosis isolate of Pseudomonas aeruginosa. Eur. J. Biochem., 268:4708–4719.

    Article  PubMed  CAS  Google Scholar 

  96. Knirel, Y.A., Helbig, J.H., and Zähringer, U., 1996, Structure of a decasaccharide isolated by mild acid degradation and dephosphorylation of the lipopolysaccharide of Pseudomonas fluorescens strain ATCC 49271. Carbohydr. Res., 283:129–139.

    Article  PubMed  CAS  Google Scholar 

  97. Knirel, Y.A. and Kochetkov, N.K., 1994, The structure of lipopolysaccharides of gram-egative bacteria. III. The structure of O-antigens: A review. Biochemistry, 59:1325–1382.

    Google Scholar 

  98. Knirel, Y.A., Vinogradov, E.V, Kocharova, N.A., Paramonov, N.A., Kochetkov, N.K., Dmitriev, B.A., Stanislavsky, E.S., and Lanyi, B., 1988, The structure of O-specific polysac-charides and serological classification of Pseudomonas aeruginosa (a review). Acta Microbiol. Hung., 35:3–24.

    PubMed  CAS  Google Scholar 

  99. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, EX., 2001, Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol., 305:567–580.

    Article  PubMed  CAS  Google Scholar 

  100. Kulshin, VA., Zähringer, U., Lindner, B., Jäger, K.E., Dmitriev, B.A., and Rietschel, E.T., 1991, Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur. J. Biochem., 198:697–704.

    Article  PubMed  CAS  Google Scholar 

  101. Kuzio, J. and Kropinski, A.M., 1983, O-antigen conversion in Pseudomonas aeruginosa PAO1 by bacteriophage D3. J. Bacteriol., 155:203–212.

    PubMed  CAS  Google Scholar 

  102. Lam, J.S., Handelsman, M.Y., Chivers, T.R., and MacDonald, L.A., 1992, Monoclonal antibodies as probes to examine serotype-specific and cross-reactive epitopes of lipopolysaccharides from serotypes 02, 05, and 016 of Pseudomonas aeruginosa. J. Bacteriol., 174:2178–2184.

    PubMed  CAS  Google Scholar 

  103. Lam, J.S., MacDonald, L.A., Kropinski, A.M., and Speert, D.P., 1988, Characterization of non-typable strains of Pseudomonas aeruginosa from cystic fibrosis patients by means of monoclonal antibodies and SDS-polyacrylamide gel electrophoresis. Serodiagn. Immunother. Infect. Dis., 2:365–374.

    Article  Google Scholar 

  104. Lam, J.S., MacDonald, L.A., and Lam, M.Y., 1987, Production of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa. Infect. Immun., 55:2854–2856.

    PubMed  CAS  Google Scholar 

  105. Lam, J.S., MacDonald, L.A., Lam, M.Y, Duchesne, L.G., and Southam, G.G., 1987, Production and characterization of monoclonal antibodies against serotype strains of Pseudomonas aeruginosa. Infect. Immun., 55:1051–1057.

    PubMed  CAS  Google Scholar 

  106. Lamping, N., Hoess, A., Yu, B., Park, T.C., Kirschning, C.J., Pfeil, D., Reuter, D., Wright, S.D., Herrmann, F., and Schumann, R.R., 1996, Effects of site-directed mutagenesis of basic residues (Arg 94, Lys 95, Lys 99) of lipopolysaccharide (LPS)-binding protein on binding and transfer of LPS and subsequent immune cell activation. J. Immunol., 157:4648–4656.

    PubMed  CAS  Google Scholar 

  107. Lanyi, B., 1966, Serological properties of Pseudomonas aeruginosa. I. Group-specific somatic antigens. Acta Microbiol. Acad. Sci. Hung., 13:295–318.

    PubMed  Google Scholar 

  108. Lee, J.C. and Lee, C.Y., 1999, Capsular polysaccharides of Staphylococcus aureus. In J.B. Goldberg (ed.), Genetics of Bacterial Polysaccharides, pp. 185-205. CRC Press, Boca Raton, FL.

    Google Scholar 

  109. Lesley, J.A. and Waldburger, CD., 2001, Comparison of the Pseudomonas aeruginosa and Escherichia coli PhoQ sensor domains: Evidence for distinct mechanisms of signal detection. J. Biol. Chem., 276:30827–30833.

    Article  PubMed  CAS  Google Scholar 

  110. Li, X., Uchiyama, T., Raetz, C.R., and Hindsgaul, O., 2003, Synthesis of a Carbohydrate-derived hydroxamic acid inhibitor of the bacterial enzyme (LpxC) involved in lipid A biosynthesis. Org. Lett., 5:539–541.

    Article  PubMed  CAS  Google Scholar 

  111. Lin, W.S., Cunneen, T., and Lee, C.Y., 1994, Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J. Bacteriol., 176:7005–7016.

    PubMed  CAS  Google Scholar 

  112. Liu, D., Cole, R.A., and Reeves, PR., 1996, An O-antigen processing function for Wzx (RfbX): A promising candidate for O-unit flippase. J. Bacteriol., 178:2102–2107.

    PubMed  CAS  Google Scholar 

  113. Liu, P.V., Matsomoto, H., Kusama, H., and Bergan, T., 1983, Survey of heat-stable major somatic antigens of Pseudomonas aeruginosa. Int. J. Syst. Bacteriol., 33:256–275.

    Article  Google Scholar 

  114. Liu, P.V and Wang, S., 1990, Three new major somatic antigens of Pseudomonas aeruginosa. J. Clin. Microbiol., 28:922–925.

    PubMed  CAS  Google Scholar 

  115. Lynn, W.A. and Golenbock, D.T., 1992, Lipopolysaccharide antagonists. Immunol. Today, 13:271–276.

    Article  PubMed  CAS  Google Scholar 

  116. Macfarlane, E.L., Kwasnicka, A., Ochs, M.M., and Hancock, R.E., 1999, PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol., 34:305–316.

    Article  PubMed  CAS  Google Scholar 

  117. Maclntyre, S., Lucken, R., and Owen, P., 1986, Smooth lipopolysaccharide is the major protective antigen for mice in the surface extract from IATS serotype 6 contributing to the polyvalent Pseudomonas aeruginosa vaccine PEV Infect. Immun., 52:76–84

    Google Scholar 

  118. Manca, M.C., Weintraub, A., and Widmalm, G., 1996, Structural studies of the Escherichia coli 026 O-antigen polysaccharide. Carbohydr. Res., 281:155–160.

    Article  PubMed  CAS  Google Scholar 

  119. Manoil, C., 1991, Analysis of membrane protein topology using alkaline phosphatase and β-galactosidase gene fusions. Methods. Cell. Biol., 34:61–75.

    Article  PubMed  CAS  Google Scholar 

  120. Masoud, H., Altaian, E., Richards, J.C., and Lam, J.S., 1994, General strategy for structural analysis of the oligosaccharide region of lipooligosaccharides. Structure of the oligosaccharide component of Pseudomonas aeruginosa IATS serotype 06 mutant R5 rough-type lipopolysaccharide. Biochemistry, 33:10568–10578.

    Article  PubMed  CAS  Google Scholar 

  121. Masoud, H., Sadovskaya, I., de Kievit, T, Altaian, E., Richards, J.C., and Lam, J.S., 1995, Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype 06 (International Antigenic Typing Scheme). J. Bacteriol., 177:6718–6726.

    PubMed  CAS  Google Scholar 

  122. Matewish, M.J., Nightinggale, S.L., Levesque, R.C., and Lam, J.S., 1998, Molecular characterization of Pseudomonas aeruginosa galE and rfpB homologs and characterization of their roles in the biosynthesis of a novel lipopolysaccharide. Abstr. MSp9. In Abstracts of the 48th Annual General Meeting of the Canadian Society of Microbiologists 1998. Canadian Society of Microbiologists, Ottawa, ON.

    Google Scholar 

  123. Matewish, M.J., Walsh, A.G., and Lam, J.S., 1999, WapG, a galactosyltransferase essential for assembly of the lipopolysaccharide core of Pseudomonas aeruginosa. Abstr. 142. In Abstacts of the American Society for Microbiology Conference on Pseudomonas’ 99: Biotechnology and Pathogenesis. American Society for Microbiology, Washington, DC.

    Google Scholar 

  124. McClure, C.P., Rusche, K.M., Peariso, K., Jackman, J.E., Fierke, CA., and Penner-Hahn, J.E., 2003, EXAFS studies of the zinc sites of UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC). J. Inorg. Biochem., 94:78–85.

    Article  PubMed  CAS  Google Scholar 

  125. Meier-Dieter, U., Starman, R., Barr, K., Mayer, H., and Rick, P.D., 1990, Biosynthesis of enterobacterial common antigen in Escherichia coli. Biochemical characterization of Tn10 insertion mutants defective in enterobacterial common antigen synthesis. J. Biol. Chem., 265:13490–13497.

    PubMed  CAS  Google Scholar 

  126. Meitert, T., 1964, Contribution a 1’etude de 1a structure antigeneique des B. pyocyaniques. II. Individualisation des groupes serologiques au moyen des antigenes ‘O’. Arch. Roum. Pathol. Microbiol., 23:679–692.

    CAS  Google Scholar 

  127. Mergaert, P., Van Montagu, M., Prome, J.C., and Holsters, M., 1993, Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc. Natl. Acad. Sci. USA, 90:1551–1555.

    Article  PubMed  CAS  Google Scholar 

  128. Mohan, S. and Raetz, C.R., 1994, Endotoxin biosynthesis in Pseudomonas aeruginosa: Enzymatic incorporation of laurate before 3-deoxy-D-mano-octulosonate. J. Bacteriol., 176:6944–6951.

    PubMed  CAS  Google Scholar 

  129. Moreau, M., Richards, J.C., Fournier, J.M., Byrd, R.A., Karakawa, W.W., and Vann, W.F., 1990, Structure of the type 5 capsular polysaccharide of Staphylococcus aureus. Carbohydr. Res., 201:285–297.

    Article  PubMed  CAS  Google Scholar 

  130. Morona, R., Mavris, M, Fallarino, A., and Manning, P.A., 1994, Characterization of the rfc region of Shigella flexneri. J. Bacteriol., 176:733–747.

    PubMed  CAS  Google Scholar 

  131. Morona, R., van den Bosch, L., and Manning, P.A., 1995, Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J. Bacteriol., 177:1059–1068.

    PubMed  CAS  Google Scholar 

  132. Newton, G.J., Daniels, C., Burrows, L.L., Kropinski, A.M., Clarke, A.J., and Lam, J.S., 2001, Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol. Microbiol., 39:1237–1247.

    Article  PubMed  CAS  Google Scholar 

  133. Nieto, J.M., Bailey, M.J., Hughes, C., and Koronakis, V., 1996, Suppression of transcription polarity in the Escherichia coli haemolysin operon by a short upstream element shared by polysaccharide and DNA transfer determinants. Mol Microbiol., 19:705–713.

    Article  PubMed  CAS  Google Scholar 

  134. Nikaido, H. and Hancock, R.E.W., 1986, Outer membrane permeability of Pseudomonas aeruginosa. In J. R. Sokatch (ed.), The Bacteria, a Treatise on Structure and function, pp. 145–193. Academic Press, Orlando

    Google Scholar 

  135. Nikaido, H. and Vaara, M., 1985, Molecular basis of bacterial outer membrane permeability. Microbiol. Rev., 49:1–32.

    PubMed  CAS  Google Scholar 

  136. Olvera, C., Goldberg, J.B., Sánchez, R. and Soberón-Chávez, G., 1999, The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiol. Lett., 179:85–90.

    Article  PubMed  CAS  Google Scholar 

  137. Onishi, H.R., Pelak, B.A., Gerckens, L.S., Silver, L.L., Kahan, F.M., Chen, M.H., Patchett, A.A., Galloway, S.M., Hyland, S.A., Anderson, M.S., and Raetz, C.R., 1996, Antibacterial agents that inhibit lipid A biosynthesis. Science, 274:980–982.

    Article  PubMed  CAS  Google Scholar 

  138. Orgambide, G., Montrozier, H., Servin, P., Roussel, J., Trigalet-Demery, D., and Trigalet, A., 1991, High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI 1000 and the complete structure of the major polysaccharide. J. Biol. Chem., 266:8312–8321.

    PubMed  CAS  Google Scholar 

  139. Palleroni, N.J., 1993, Pseudomonas classification. A new case history in the taxonomy of gram-negative bacteria. Antonie Van Leeuwenhoek, 64:231–251.

    Article  PubMed  Google Scholar 

  140. Parolis, H., Parolis, L.A., and Olivieri, G., 1997, Structural studies on the Shigella-like Escherichia coli 0121 O-specific polysaccharide. Carbohydr. Res., 303:319–325.

    Article  PubMed  CAS  Google Scholar 

  141. Penketh, A., Pitt, T, Roberts, D., Hodson, M.E., and Batten, J.C., 1983, The relationship of phenotype changes in Pseudomonas aeruginosa to the clinical condition of patients with cystic fibrosis. Am. Rev. Respir. Dis., 127:605–608.

    PubMed  CAS  Google Scholar 

  142. Persson, B., Kallberg, Y., Oppermann, U, and Jörnvall, H., 2003, Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact., 143-144:271–278.

    Article  PubMed  CAS  Google Scholar 

  143. Pirrung, M.C., Tumey, L.N., McClerren, A.L., and Raetz, C.R., 2003, High-throughput catch-and-release synthesis of oxazoline hydroxamates. Structure-activity relationships in novel inhibitors of Escherichia coli LpxC: In vitro enzyme inhibition and antibacterial properties. J.Am. Chem. Soc., 125:1575–1586.

    Article  PubMed  CAS  Google Scholar 

  144. Pirrung, M.C., Tumey, L.N., Raetz, C.R., Jackman, J.E., Snehalatha, K., McClerren, A.L., Fierke, C.A., Gantt, S.L., and Rusche, K.M., 2002, Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): Isoxazoline zinc amidase inhibitors bearing diverse metal binding groups. J. Med. Chem., 45:4359–4370.

    Article  PubMed  CAS  Google Scholar 

  145. Pitt, T.L., 1988, Epidemiological typing of Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis., 7:238–247.

    Article  PubMed  CAS  Google Scholar 

  146. Poon, K.K.H., Mead, K., and Lam, J.S., 2003, Characterization WapR, a putative rhamno-syltransferase involved in core oligosaccharide biosynthesis from Pseudomonas aeruginosa. Abstr. D-242. In Abstracts of the 103rd General Meeting of the American Society for Microbiology 2003. American Society for Microbiology, Washington, DC.

    Google Scholar 

  147. Qureshi, S.T., Lariviere, L., Leveque, G., Clermont, S., Moore, K.J., Gros, P., and Malo, D., 1999, Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med., 189:615–625

    Article  PubMed  CAS  Google Scholar 

  148. Radika, K. and Raetz, C.R., 1988, Purification and properties of lipid A disaccharide synthase of Escherichia coli. J. Biol. Chem., 263:14859–14867.

    PubMed  CAS  Google Scholar 

  149. Raetz, C.R. and Roderick, S.L., 1995, A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science, 270:997–1000.

    Article  PubMed  CAS  Google Scholar 

  150. Raetz, C.R. and Whitfield, C., 2002, Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 71:635–700.

    Article  PubMed  CAS  Google Scholar 

  151. Rahim, R., Burrows, L.L., Monteiro, M.A., Perry, M.B., and Lam, J.S., 2000, Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology, 146:2803–2814.

    PubMed  CAS  Google Scholar 

  152. Raymond, C.K., Sims, E.H., Kas, A., Spencer, D.H., Kutyavin, T.V, Ivey, R.G., Zhou, Y., Kaul, R., Clendenning, J.B., and Olson, M.V., 2002, Genetic variation at the O-antigen biosynthetic locus in Pseudomonas aeruginosa. J. Bacteriol., 184:3614–3622.

    Article  PubMed  CAS  Google Scholar 

  153. Reddy, G.P., Hayat, U., Bush, CA., and Morris, Jr., J.G., 1993, Capsular polysaccharide structure of a clinical isolate of Vibrio vulnificus strain BO62316 determined by hetero-nuclear NMR spectroscopy and high-performance anion-exchange chromatography. Anal. Biochem., 214:106–115.

    Article  PubMed  CAS  Google Scholar 

  154. Reddy, G.P., Hayat, U., Xu, Q., Reddy, K.V, Wang, Y., Chiu, K.W., Morris, Jr., J.G., and Bush, CA., 1998, Structure determination of the capsular polysaccharide from Vibrio vulnificus strain 6353. Eur. J. Biochem., 255:279–288.

    Article  PubMed  CAS  Google Scholar 

  155. Reeves, P., 1993, Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet., 9:17–22.

    Article  PubMed  CAS  Google Scholar 

  156. Reeves, P.R., 1994, Biosynthesis and assembly of lipopolysaccharide. In A. Neuberger and L.L.M. van Deenen (ed.), Bacterial Cell Wall, New Comprehensive Biochemistry, pp. 281–314. Elsevier Science Publishers, New York.

    Chapter  Google Scholar 

  157. Reeves, PR., Hobbs, M., Valvano, M.A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D., Raetz, C.R., and Rick, P.D., 1996, Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol., 4:495–503.

    Article  PubMed  CAS  Google Scholar 

  158. Rick, P.D. and Osborn, M.J., 1977, Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-D-mannooctulosonate-8-phosphate synthetase. J. Biol. Chem., 252:4895–4903.

    PubMed  CAS  Google Scholar 

  159. Rivera, M, Bryan, L.E., Hancock, R.E., and McGroarty, E.J., 1988, Heterogeneity of lipopolysaccharides from Pseudomonas aeruginosa: Analysis of lipopolysaccharide chain length.J Bacteriol., 170:512–521.

    PubMed  CAS  Google Scholar 

  160. Rocchetta, H.L., Burrows, L.L., and Lam, J.S., 1999, Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa. Microbiol. Mol. Biol.Rev., 63:523–553.

    PubMed  CAS  Google Scholar 

  161. Rocchetta, H.L., Burrows, L.L., Pacan, J.C., and Lam, J.S., 1998, Three rhamnosyltrans-ferases responsible for assembly of the A-band D-rhamnan polysaccharide in Pseudomonas aeruginosa: A fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol. Microbiol., 28:1103–1119.

    Article  PubMed  CAS  Google Scholar 

  162. Rowe, P.S. and Meadow, P.M., 1983, Structure of the core oligosaccharide from the lipopolysaccharide of Pseudomonas aeruginosa PAC1R and its defective mutants. Eur. J. Biochem., 132:329–337.

    Article  PubMed  CAS  Google Scholar 

  163. Sadovskaya, I., Brisson, J.R., Lam, J.S., Richards, J.C., and Altman, E., 1998, Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype 05. Eur. J. Biochem., 255:673–684.

    Article  PubMed  CAS  Google Scholar 

  164. Sadovskaya, I., Brisson, J.R., Thibault, P., Richards, J.C., Lam, J.S., and Altaian, E., 2000, Structural characterization of the outer core and the O-chain linkage region of lipopolysac-charide from Pseudomonas aeruginosa serotype 05. Eur. J. Biochem., 267:1640–1650.

    Article  PubMed  CAS  Google Scholar 

  165. Sánchez Carballo, P.M., Rietschel, E.T., Kosma, P., and Zähringer, U., 1999, Elucidation of the structure of an alanine-lacking core tetrasaccharide trisphosphate from the lipopolysac-charide of Pseudomonas aeruginosa mutant H4. Eur. J. Biochem., 261:500–508.

    Article  PubMed  Google Scholar 

  166. Sandvik, O., 1960, Serological comparison between strains of Pseudomonas aeruginosa from human and animal sources. Acta Pathol. Microbiol. Scand., 48:56–67.

    Google Scholar 

  167. Sau, S., Sun, J., and Lee, C.Y., 1997, Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J. Bacteriol., 179:1614–1621.

    Google Scholar 

  168. Schnaitman, C.A. and Klena, J.D., 1993, Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol. Rev., 57:655–682.

    PubMed  CAS  Google Scholar 

  169. Shashkov, A.S., Paramonov, N.A., Veremeychenko, S.P., Grosskurth, H., Zdorovenko, G.M., Knirel, Y.A., and Kochetkov, N.K., 1998, Somatic antigens of pseudomonads: Structure of the O-specific polysaccharide of Pseudomonas fluorescens biovar B, strain IMV 247. Carbohydr. Res., 306:297–303.

    Article  PubMed  CAS  Google Scholar 

  170. Sompolinsky, D., Samra, Z., Karakawa, W.W., Vann, W.F., Schneerson, R., and Malik, Z., 1985, Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J. Clin. Microbiol., 22:828–834.

    PubMed  CAS  Google Scholar 

  171. Sonnhammer, EX., Eddy, S.R., Birney, E., Bateman, A., and Durbin, R., 1998, Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res., 26:320–322.

    Article  PubMed  CAS  Google Scholar 

  172. Sorensen, P.G., Lutkenhaus, X, Young, K., Eveland, S.S., Anderson, M.S., and Raetz, C.R., 1996, Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase in Escherichia coli. The second enzymatic step of lipid A biosynthesis. J. Biol. Chem., 271:25898–25905.

    Article  PubMed  CAS  Google Scholar 

  173. Stanislavsky, E.S. and Lam, J.S., 1997, Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol. Rev., 21:243–277.

    Article  PubMed  CAS  Google Scholar 

  174. Stanislavsky, E.S., Lanyi, B., Knirel, Y.A., and Dmitriev, B.A., 1988, Chemotypes of Pseudomonas aeruginosa. Zh. Microbiol. Epidemiol. Immunobiol., 5:1–14.

    Google Scholar 

  175. Steeghs, L., Berns, M., ten Hove, J., de Jong, A., Roholl, P., van Alphen, L., Tommassen, J., and van der Ley, P., 2002, Expression of foreign LpxA acyltransferases in Neisseria meningitidis results in modified lipid A with reduced toxicity and retained adjuvant activity. Cell. Microbiol., 4:599–611.

    Article  PubMed  CAS  Google Scholar 

  176. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufhagle, W.O., Kowalik, DJ., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y, Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, LT., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V, 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  177. Tassios, P.T., Gennimata, V, Maniatis, A.N., Fock, C., and Legakis, N.J., 1998, Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup Oil: The Greek Pseudomonas Aeruginosa Study Group. J. Clin. Microbiol., 36:897–901.

    PubMed  CAS  Google Scholar 

  178. Tobias, P.S., Soldau, K., and Ulevitch, R.J., 1986, Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J. Exp. Med., 164:777–793.

    Article  PubMed  CAS  Google Scholar 

  179. Trent, M.S., Ribeiro, A.A., Lin, S., Cotter, R.J., and Raetz, C.R., 2001, An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: Induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem., 276:43122–43131.

    Article  PubMed  CAS  Google Scholar 

  180. Vachee, A., Scheftel, J.M., Husson, M.O., Izard, D., Ross, P., and Monteil, H., 1997, Tricentric study of the sensitivity of Pseudomonas aeruginosa serotyping to beta-lactams and aminoglycosides. Pathol. Biol. (Paris), 45:357–362.

    PubMed  CAS  Google Scholar 

  181. Valdivia, R.H., Cirillo, D.M., Lee, A.K., Bouley, D.M., and Falkow, S., 2000, mig-14 is a horizontally acquired, host-induced gene required for Salmonella enterica lethal infection in the murine model of typhoid fever. Infect. Immun., 68:7126–7131.

    Article  PubMed  CAS  Google Scholar 

  182. Valdivia, R.H. and Falkow, S., 1997, Fluorescence-based isolation of bacterial genes expressed within host cells. Science, 277:2007–2011.

    Article  PubMed  CAS  Google Scholar 

  183. Valvano, M.A., Messner, P., and Kosma, P., 2002, Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology, 148:1979–1989.

    PubMed  CAS  Google Scholar 

  184. Verder, E. and Evans, J., 1961, A proposed antigen schema for the identification of strains of Pseudomonas aeruginosa. J. Infect. Dis., 109:183–193.

    Article  PubMed  CAS  Google Scholar 

  185. Virlogeux, I., Waxin, H., Ecobichon, C., and Popoff, M.Y., 1995, Role of the viaB locus in synthesis, transport and expression of Salmonella typhi Vi antigen. Microbiology, 141:3039–3047.

    Article  PubMed  CAS  Google Scholar 

  186. Walsh, A.G., Burrows, L.L., and Lam, J.S., 1999, Genetic and biochemical characterization of an operon involved in the biosynthesis of S-deoxy-D-manno-octulosonic acid in Pseudomonas aeruginosa. FEMS Microbiol. Lett., 173:27–33.

    PubMed  CAS  Google Scholar 

  187. Walsh, A.G., Matewish, M.J., Burrows, L.L., Monteiro, M.A., Perry, M.B., and Lam, J.S., 2000, Lipopolysaccharide core phosphates are required for viability and intrinsic drug resistance in Pseudomonas aeruginosa. Mol. Microbiol., 35:718–727.

    Article  PubMed  CAS  Google Scholar 

  188. Wang, J., Lory, S., Ramphal, R., and Jin, S., 1996, Isolation and characterization of Pseudomonas aeruginosa genes inducible by respiratory mucus derived from cystic fibrosis patients. Mol. Microbiol., 22:1005–1012.

    Article  PubMed  CAS  Google Scholar 

  189. Wang, L. and Reeves, PR., 1998, Organization of Escherichia coli 0157 O antigen gene cluster and identification of its specific genes. Infect. Immun., 66:3545–3551.

    PubMed  CAS  Google Scholar 

  190. Waxin, H., Virlogeux, I., Kolyva, S., and Popoff, M.Y., 1993, Identification of six open reading frames in the Salmonella enterica subsp. enterica ser. Typhi viaB locus involved in Vi antigen production. Res. Microbiol., 144:363–371.

    Article  PubMed  CAS  Google Scholar 

  191. Whitfield, C., 1995, Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol., 3:178–185.

    Article  PubMed  CAS  Google Scholar 

  192. Whitfield, C., Amor, P.A., and Kopiin, R., 1997, Modulation of the surface architecture of gram-negative bacteria by the action of surface polymer: lipid A-core ligase and by determinants of polymer chain length. Mol. Microbiol., 23:629–638.

    Article  PubMed  CAS  Google Scholar 

  193. Wilkinson, S.G., 1981, 31P N.m.r. evidence for the presence of triphosphate residues in lipopolysaccharides from Pseudomonas aeruginosa. Biochem. J., 199:833–835.

    PubMed  CAS  Google Scholar 

  194. Wilkinson, S.G., 1983, Composition and structure of lipopolysaccharides from Pseudomonas aeruginosa. Rev. Infect. Dis., 5(Suppl 5):S941–S949.

    Article  PubMed  CAS  Google Scholar 

  195. Williamson, J.M., Anderson, M.S., and Raetz, C.R., 1991, Acyl-acyl carrier protein specificity of UDP-GlcNAc acyltransferases from gram-negative bacteria: Relationship to lipid A structure. J. Bacteriol., 173:3591–3596.

    PubMed  CAS  Google Scholar 

  196. Wilson, D.B. and Hogness, D.S., 1969, The enzymes of the galactose operon in Escherichia coli. II. The subunits of uridine diphosphogalactose 4-epimerase. J. Biol. Chem., 244:2132–2136.

    PubMed  CAS  Google Scholar 

  197. Wokatsch, R., 1964, Serologische Untersuchungen an Pseudomonas aeruginosa (Bact. Pyocyaneum) aus verschiedenen Tierarten. Zbl Bakteriol. Abt. I. Orig., 192:468–476.

    CAS  Google Scholar 

  198. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., and Mathison, J.C., 1990, CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  199. Wyckoff, T.J., Lin, S., Cotter, R.J., Dotson, G.D., and Raetz, C.R., 1998, Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J. Biol Chem., 273:32369–32372.

    Article  PubMed  CAS  Google Scholar 

  200. Yang, H., Matewish, M, Loubens, I., Storey, D.G., Lam, J.S., and Jin, S., 2000, migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology, 146:2509–2519.

    PubMed  CAS  Google Scholar 

  201. Ye, R.W., Zielinski, N.A., and Chakrabarty, A.M., 1994, Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J. Bacteriol, 176:4851–4857.

    PubMed  CAS  Google Scholar 

  202. Yethon, J.A., Vinogradov, E., Perry, M.B., and Whitfield, C., 2000, Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. J. Bacteriol., 182:5620–5623.

    Article  PubMed  CAS  Google Scholar 

  203. Yethon, J.A. and Whitfield, C., 2001, Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability. J. Biol. Chem., 276:5498–5504.

    Article  PubMed  CAS  Google Scholar 

  204. Young, K., Silver, L.L., Bramhill, D., Cameron, P., Eveland, S.S., Raetz, C.R., Hyland, S.A., and Anderson, M.S., 1995, The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J. Biol. Chem., 270:30384–30391.

    Article  PubMed  CAS  Google Scholar 

  205. Zhao, X., Creuzenet, C., Bélanger, M., Egbosimba, E., Li, J., and Lam, J.S., 2000, WbpO, a UDP-N-acetyl-D-galactosamine dehydrogenase from Pseudomonas aeruginosa serotype 06. J. Biol. Chem., 275:33252–33259.

    Article  PubMed  CAS  Google Scholar 

  206. Zhao, X. and Lam, J.S., 2002, WaaP of Pseudomonas aeruginosa is a novel eukaryotic type protein-tyrosine kinase as well as a sugar kinase essential for the biosynthesis of core lipopolysaccharide. J. Biol. Chem., 277:4722–4730.

    Article  PubMed  CAS  Google Scholar 

  207. Zhao, X., Wenzel, C.Q., and Lam, J.S., 2002, Nonradiolabeling assay for WaaP, an essential sugar kinase involved in biosynthesis of core lipopolysaccharide of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 46:2035–2037.

    Article  PubMed  CAS  Google Scholar 

  208. Zhou, Z., White, K.A., Polissi, A., Georgopoulos, C., and Raetz, C.R., 1998, Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem., 273:12466–12475.

    Article  PubMed  CAS  Google Scholar 

  209. Zielinski, N.A., Chakrabarty, A.M., and Berry, A., 1991, Characterization and regulation of the Pseudomonas aeruginosa algC gene encoding phosphomannomutase. J. Biol. Chem., 266:9754–9763.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lam, J.S., Matewish, M., Poon, K.K.H. (2004). Lipopolysaccharides of Pseudomonas aeruginosa . In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9088-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9088-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4789-7

  • Online ISBN: 978-1-4419-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics