Skip to main content

Biomechanics of Body Support Surfaces: Issues of Decubitus Ulcer

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

External reaction forc es acting via various body support surfaces are required to support the body und er gravity and exte rn al locomotive forces. These biomechanical forces act on the skin in contact with the body support surface and concomitantly deform the associated subcutaneous tissues. Example s include the forces acting on the buttock tissues during wheelchair propulsion, the forces acting on the plantar foot tissu es during standing and walking, and the forces acting on the residual limb tissues via the prosthetic socket during ambulation. In many contexts of rehabilitation, such as patients who need to be bedridden for a long time, subj ects who are wheelchair-bound because of spinal cord injuries, as well as subj ects with neuropathic feet, excessive exposure to unwarranted forces at the body support interfaces could lead to decubitus ulcer, which is commonly referred to as pressure sore. If these excessive epidermal loadings are not appropriately accommodated or relieved in a timely manner, either actively or passively, they can lead to extreme discomfort and serious clinical complications. This paper reviews our work on the biomechanics of body support interfaces since the mid 90’s and highlights some of the major challenges in pre ssure sore research. This paper summarizes our dynamic pressure measurement studies at the seating/buttock interfaces, the prosthetic socket/residual limb interfaces, and the insole/plantar foot interfaces under various conditions. It revisits a biomechanical criterion for pressure sore, proposed in terms of tissue compaction following interstitial fluid flows under epidermal loading. This paper describes the development of our tissue property assessment apparatus, namely the Tissue Ultrasound Palpation System (TUPS). It also presents our recent experimental studies on the effects of externally applied epidermal loadings on cutaneous blood perfusion. This paper is relevant to the design of these body support surfaces, such as prosthetic sockets, seat cushions and foot orthoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader D L and Bowker P, Mechanical characteristics of skin and underlying tissues in vivo, Biomaterials, Vol. 4: 305–308, 1983.

    Google Scholar 

  2. Bader D L, Hawken MB. Ischial pressure under the seated person. In Bader, D.A. eds. Pressure sores: clinical practice and scientific approach, Macillan Press, 1990.

    Google Scholar 

  3. Bader, D. L., White, S.H., The viability of soft tissues in elderly subjects undergoing hip surgery. Age and Ageing, 1998; 27:217–221.

    Google Scholar 

  4. Bar, C. A., The response of tissues to applied pressure - PhD Dissertation, University of Wales College of Medicine, 1988.

    Google Scholar 

  5. Barbenel JC and Payne PA, In vivo mechanical testing of dermal properties, Bioengineering and the Skin, Vol. 3: 8–38, 1981.

    Google Scholar 

  6. Barczak, C. A., Barnett, R. I., Child, E. J., Bosley, L. M. Fourth national pressure ulcer prevalence surveys, Journal of Wound Care 1997; 10(4): 18–26.

    Google Scholar 

  7. Barnett, R. I., Ablarde, J. A., Skin vascular reaction to short durations of normal seating, Arch Phys Med Rehabil, 1995; 76:533–540.

    Google Scholar 

  8. Barton, A. A., Barton, B., The clinical and thermographical evaluation of pressure sores. Age and Ageing, 1973a; 2:55–59.

    Google Scholar 

  9. Barton, A. A., Pressure sores, an electron microscope and thermographical study. Modern Geriatrics, 1973b; 3:8.

    Google Scholar 

  10. Bell, J. C., Matthews, S. D. Results of a clinical investigation of four pressure-reduction replacement mattresses. J ET Nurs 1993;20:204–210.

    Google Scholar 

  11. Bennett, L. Part III: Analysis of shear stress. Bull Prothsthet Res. 1972; 10:38–51.

    Google Scholar 

  12. Bennett, L., Kavner, D., Lee, B. K., Trainor, F. A. Shear vs Pressure as Causative Factors in Skin Blood Flow Occlusion, Arch Phys Med Rehabil, 1979, 60:309–314.

    Google Scholar 

  13. Bennett, L., Lee, B. Y. Vertical shear existence in animal pressure threshold experiments, Decubitus, 1988; l(l):18–24.

    Google Scholar 

  14. Bergtholdt, H., Brand, P. W., Thermography: An aid in the management of insensitive feet and stumps. Arch Phys Med Rehabil, 1975; 56:205–209.

    Google Scholar 

  15. Bogie, K. M., Nuseibeh, I., Bader, D. L., Early progressive changes in tissue viability in the seated spinal cord injured subject. Paraplegia, 1995; 33:141–147.

    Google Scholar 

  16. Boulton, A. J. M., Betts, R. P., Franks, C. I. Abnormalities of foot pressure in early diabetic neuropathy. Diabetic Medicine, 1987; 4:225–228.

    Google Scholar 

  17. Brand, P. W. Management if the insensitive limb, Physical Therapy, 1979; 59(1):8–12.

    Google Scholar 

  18. Brand, P. W. The diabiatic foot. In Ellenburg, M., Rifkin, H. (eds): Diabetes Millitus: Theory and Practice, eds. New Hyde Park, NY. Medical Examination Publishing Co Inc, 1983:829–849.

    Google Scholar 

  19. Brienza, D. M., Ostrander, L.E. Mechanical loading and pressure ulcers In Lee, B.Y. eds. Surgical management of cutaneous ulcers and pressure sores, NY, Chapman and Hall, 1998.

    Google Scholar 

  20. Brienza, D. M. Karg, P. E., Geyer, M. J., Kelsey, S., Trefler, E., The relationship between pressure ulcer incidence and buttock-seat cushion interface pressure in at-risk elderly wheelchair usres, Arch Phy Med Rehabil, 2001; 82(4):529–533.

    Google Scholar 

  21. Brown, I. A., A scanning electron microscope study of the effects of uniaxial tension on human skin, Br. J. Dermatology, 1973; Vol 89: 383–393.

    Google Scholar 

  22. Brown-Sequard, C.E., Experimental researches applied to physiology and pathology. Medical Examiner (Philadelphia), 1852; 8:481–504.

    Google Scholar 

  23. Bulkley G. B., Free radical-mediated reperfusion injury: A selected review. Br. J. Cancer. Vol 55 (Suppl. VIII):66–73. 1987.

    Google Scholar 

  24. Bulkley G. B., Free radical-mediated reperfusion injury: A selected review. Br. J. Cancer, 1987; 55(Suppl. VIII):66–73.

    Google Scholar 

  25. Byrne D W, Salzberg C A. Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord, 1996;34:255–263.

    Google Scholar 

  26. Chung K. C., Tissue Contour and Interface Pressure on Wheelchair Cushions - PhD Dissertation, University of Virginia, 1987.

    Google Scholar 

  27. Daniel R K, Priest D L, Wheatley D C. Etiology Factors in Pressure Sores: An Experimental Model. Arch Phys Med Rehabil 1981;62:492–498.

    Google Scholar 

  28. Dansereau J G, Conway H. Closure of decubiti in paraplegics, Plast Reconsr Surg 1964; 33:474–480.

    Google Scholar 

  29. Davis K., Prevention of pressure sores, Br J Nurs, 1994; 3(21): 1099–1104.

    Google Scholar 

  30. Dikstein S and Hartzshtark, In vivo measurement of some elastic properties of human skin, in: Bioengineering and Skin, eds. Marks R and Payne PA, Lancaster: MTP Press, p45–53, 1981.

    Google Scholar 

  31. Dinsdale, S. M., Decubitus ulcers: role of pressure and friction in causation. Arch Phys Med Rehab, 1974; 55:147–152.

    Google Scholar 

  32. Evans Associate. Pressure sores - a ticking time - bomb. Intensive Critical Care Nursing 1995; 11:44–48.

    Google Scholar 

  33. Finestone, H. M., Levine, S. P., Carlson, G. A., Chizinsky, K. A., Kett, R. L., Erythema and skin temperature following continuous sitting in spinal cord injured individuals. J Rehab Res Dev, 1991; 28(4):27–32.

    Google Scholar 

  34. Finestone, H. M., Levine, S. P., Chizinsky, K. A., Kett, R. L., Skin temperature and erythema after prolonged sitting in spinal cord injured individuals. Proceedings of the 12th RESNA annual meeting, 1989; 75–76.

    Google Scholar 

  35. Fung Y.C. Bio-viscoelastic Solids, in: Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, p196–260, 1981.

    Google Scholar 

  36. Goldstein, B., Sanders, J., Skin response to repetitive mechanical stress: a new experimental model in pig. Arch Phys Med Rehabil, 1998; 79:265–272.

    Google Scholar 

  37. Granger D.N., Role of xanthine oxidase and granulocytes in ischemia reperfusion injury. Am J Physiol, 1988; 255:H1269–H1275.

    Google Scholar 

  38. Granger D.N., Role of xanthine oxidase and granulocytes in ischemia reperfusion injury. Am J Physiol, 1988; 255:H1269–H1275.

    Google Scholar 

  39. Groth, K.E., Clinical observations and experimental studies on the origin of decubiti. Acta. Chir. Scand., 1942; 87,Suppl.76:I,l-209.

    Google Scholar 

  40. Guyton, A.C., Human physiology and mechanisms of diseases. 3 edn. W. B. Saunders, Boston, 1982.

    Google Scholar 

  41. Hagisawa S, Ferguson-Pell M, Cardi M, Miller S D. Assessment of skin blood content and oxygenation in spinal cord injured subjects during reactive hyperemia. J Rehab Res Dev, 1994;31(1): 1–14.

    Google Scholar 

  42. Hall, D.A., Blackett, A.D., Zajac, A.R., Switala, S., Airey, C.M., Changes in skinfold thickness with increasing age. Age and Ageing, 1981; 10(l):19–23. 1981

    Google Scholar 

  43. Harris, J.R., Brand, P.W., Patterns of disintegration of tarsus in anaesthetic foot. J. Bone Joint Surg, 1966; 48b:4–16.

    Google Scholar 

  44. Herrman, E.C., Knapp, C.F., Donofrio, J.C., Salcido, R., Skin perfusion responses to surface pressure-induced ischemia: implication for the developing pressure ulcer. J Rehab Res Dev, 1999; 36(2): 109–120.

    Google Scholar 

  45. Herrman, E.C., Knapp, C.F., Donofrio, J.C., Salcido, R., Skin perfusion responses to surface pressure-induced ischemia: implication for the developing pressure ulcer. J Rehab Res Dev, 1999; 36(2): 109–120.

    Google Scholar 

  46. Houwing R., Overgoor M., Kon M., Jansen G., van Asbeck B.S., Haalboom J.R.E., Pressure-induced skin lesions in pigs: reperfusion injury and the effects of vitamin E, J Wound Care 2000; 9(l):36–40.

    Google Scholar 

  47. Husian, T., An experimenta; study of some pressure effects on tissue with reference to the bed sore problem. J Path Bact, 1953; 66:347–358.

    Google Scholar 

  48. Kang E.T. and Mak A.F.T. Evaluation of a Simple Approach to Modify the Supporting Properties of Seating Foam Cushion for Pressure Relief. Assistive Technology. Vol 9: 47–54, 1997.

    Google Scholar 

  49. Kirk, J.E., Chieffi, M., Variation with age in elasticity of skin and subcutaneous tissue in human individuals, J Gerontol, 1962; 17:373–80.

    Google Scholar 

  50. Knight, S.L., Taylor, R.P., Polliack, A.A., Bader, D.L., Establishing predictive indicators for the status of loaded soft tissues, J App Physio, 2001; 90(6):2231–2237.

    Google Scholar 

  51. Koo T.K.K., Mak A.F.T. and Lee Y.L. Posture Effects on the Seating Interface Biomechanics: Comparison between the Roho and polyurethane Foam Cushions. Archives of Physical Med & Rehab. Vol 77(1): 40–47, 1996.

    Google Scholar 

  52. Kosiak, M., Etiology and pathology of ischaemic ulcers. Arch Phys Med Rehab 1959; 40:62–69.

    Google Scholar 

  53. Kosiak, M., Etiology of decubitus ulcers. Arch. Phys Med Rehab, 1961; 42:19–29.

    Google Scholar 

  54. Krouskop, T.A., A synthesis of the factors that contribute to pressure sore formation. Medical Hypotheses, 1983, 11:255–267.

    Google Scholar 

  55. Lanir, Y., Dikstein, S. Hartzshtark, A., and Manny, V., In-vivo indentation of human skin, J. Biomechanical Engineering, 1990; 112: 63–69.

    Google Scholar 

  56. Lanir, Y., Skin mechanics, in: Handbook of Bioengineering, eds. Skalak R and Chien S, New York: McGraw-Hill Book Company, Vol. 11.1–25, 1987.

    Google Scholar 

  57. Lee, B.Y., Karmakar, M.G. Pressure ulcers: an overview in Surgical Management of Cutaneous Ulcers and Pressure Sores. Ed. Lee BY and Herz BL. 1998 Chapman & Hall

    Google Scholar 

  58. Lee, B.Y., Shaw, W.W., Madden, J.L. Thoden, J.L., Lewis, J.M., Surgical management of pressure sores, Contemparory Orthopaedics 1982; 5:49–55.

    Google Scholar 

  59. Leung S.F., Zheng Y.P., Choi C.Y.K., Mak S.S.S., Chiu S.K.W., Zee B., and Mak A.F.T. Quantitative measurement of post-irradiation neck fibrosis based on Young’s modulus: description of a new method and clinical results. Cancer Vol. 95: 656–662, 2002.

    Google Scholar 

  60. Levy, S.W., Skin problems of the leg amputee. Prosthet Orthot Int, 1980: 4: 37–44.

    Google Scholar 

  61. Lyon, C.C., Kulkarni, J., Zimerson, E., Van Ross, E., Beck, M.H., Skin disorders in amputees. J Am Acad Dermatol, 2000; 42: 501–507.

    Google Scholar 

  62. Mahanty, S.D., Roemer, R.B., Thermal response of skin to application of localized pressure. Arch Phys Med Rehabil, 1979; 60(12)584–590.

    Google Scholar 

  63. Mak A.F.T., Huang L.D. and Wang Q.Q. A Biphasic Poroelastic Analysis of the Flow Dependent Subcutaneous Tissue Pressure and Compaction due to Epidermal Loadings - Issues in Pressure Sore. Journal of Biomechanical Engineering, Trans. ASME, Vol 116(4): 421–429, 1994b.

    Google Scholar 

  64. Mak AFT, Liu GHW and Lee SY, Biomechanical assessment of below-knee residual limb tissue, J. Rehabil. Res. & Dev, Vol. 31(3): 188–198, 1994a.

    Google Scholar 

  65. Mak AFT, Zhang M, Boone D. State-of-the-art Research in Lower Limb Prosthetic Biomechanics - Socket Interface. Journal of Rehabilitation Research and Development. Vol 38(2): 161–173, 2001.

    Google Scholar 

  66. Maklebust, J., Mandoux, L., Sieggreeb, M. Pressure relief characteristics of variou support surfaces used in prevention and treatment of pressure ulcers. J Enterostom Ther 1986;13:85–9.

    Google Scholar 

  67. Malinauskas M, Krouskop TA and Barry PA, Noninvasive measurement of the stiffness of tissue in the above-knee amputation limb, J. Rehabil. Res. & Dev., Vol. 26(3): 45–52, 1989.

    Google Scholar 

  68. Meijer J H, Germs P H, Schneider H, Ribbe M W. Susceptibility to decubitus ulcer formation. Arch Phys Med Rehabil 1994; 75:318–323.

    Google Scholar 

  69. Michel, C., Gillott, H. Microvascular mechanisms in stasis and ischaemia, In: Bader, D.L., editor. Pressure Sores. Clinical practice and scientific approach, Macmillan Press, 1990, 153–163.

    Google Scholar 

  70. Miller, G.E., Seake, J.L., The recovery of terminal lymph flow following occlusion, J Biomed Eng, 1987; 109(l):48–54.

    Google Scholar 

  71. Mulholland, J.H., Tui, C.O., Wright, A.M., Vince, V., Shafiroff, N., Protein Metabolism in bedsores. Ann Surg, 1943; 118:1015.

    Google Scholar 

  72. Murno, D., Care of the Back following Spinal-cord Injuries: A Consideration of Bed Sores. New Engl J Med, 1940; 223(11):391–398.

    Google Scholar 

  73. Newson, T.P., Pearcy, M.J., Rolfe, P. Skin surface P02 measurement and the effect of externally applied pressure. Arch Phys Med Rehabil, 1981; 62:390–392.

    Google Scholar 

  74. Niazi, Z.B.M., Salzberg, A.S., Byrne, D.W., Viehbeck, M. Recurrence of Initial Pressure Ulcer in Persons with Spinal Cord Injuries. Adv Wound Care 1997;10(3):38–42.

    Google Scholar 

  75. Nielsen, C.C., A survey of amputees: functional level and life satisfaction, information needs, and prosthetist’s role. J Prosthet Orthot, 1990; 3:125–129.

    Google Scholar 

  76. O’Dea K. The prevalence of pressure sores in four European countries. Journal of Wound Care 1995; 4 (4):192–195.

    Google Scholar 

  77. Oot-Giromini B.A. Pressure ulcer prevalence, incidence and associated risk factors in the community, Decubitus 1993; 6(5):24–32.

    Google Scholar 

  78. Pathak AP, Silver-Thorn B, Thierfelder CA, and Prieto TE. A rate-controlled indentor for in vivo analysis of residual limb tissues. IEEE Trans Rehabil Eng. Vol. 6: 12–20, 1998.

    Google Scholar 

  79. Payne, C.B. The public health impact of diabetic foot disease. Australasian Journal of Podiatric Medicine, 1997; 31(4):115–119.

    Google Scholar 

  80. Pecoraro, R.E., Reiber, G.E., Burgess, E.E.M. Pathways to diabetic limb amputation: basis for prevention. Diabetes Care, 1990; 13:513–521.

    Google Scholar 

  81. Peirce S.M., Skalak T.C., Rodeheaver G.T., Ischemia-reperfusion injury in chronic pressure ulcer formation: A skin model in the rat, Wound repair and regeneration 2000; 8(l):68–76.

    Google Scholar 

  82. Perneger, T.V., Heliot, C, Rae, A.C. Hospital-acquired pressure ulcers. Arch. Phys. Med. Rehabil., 1998; 158:1940–1945.

    Google Scholar 

  83. Pinzur, M.S., Shields, N.N., Goelitz, B., Slovenkai, M., Kaye, R., Ross, S.D., Suri, M. American orthopaedic foot and ankle society shoe survey of diabetic patients. Foot and Ankle International, 1999; 20:703–707.

    Google Scholar 

  84. Polliack, A., Taylor, R., Bader, D., Analysis of sweat during soft tissue breakdown following pressure ischemia, J Rehab Res Dev, 1993; 30(2):250–259.

    Google Scholar 

  85. Polliack, A., Taylor, R., Bader, D., Sweat Analysis following pressure ischaemia in a group of debilitated subjects, J Rehab Res Dev, 1997; 34(3):303–308.

    Google Scholar 

  86. Reddy, N.P., Cochran, G.V.B., Krouskop, T.A., Interstitial fluid flow as a factor in decubitus ulcer formation. J Biomech, 1981; 14:879–881.

    Google Scholar 

  87. Reddy, N.P., Effects of Mechanical Stresses on Lymph ad Interstitial Fluid Flow, Bader, D.L. ed., Pressure Sores: Clinical Practice and Scientific Approach, Macmillan Press, 1990, 203–222.

    Google Scholar 

  88. Reichel, S.M., Shearing force as a factor in decubitus ulcers in paraplegics, JAMA, 1956; 166:762.

    Google Scholar 

  89. Reswick, J.B., Rogers, J. Experience at Rancho Los Amigos Hospital with Devices and Techniques to Prevent Pressure Sores. In Kenedi, R.M. Cowden J.M. and Scales, J.T. eds. Bedsore Biomechanics., Pub. McMillan, London. 301–310, 1976.

    Google Scholar 

  90. Richardson, R., Meyer, P. Prevalence and incidence of pressure sores in acute spinal cord injuries. Paraplegia 1987:19:235–247.

    Google Scholar 

  91. Riodan, B., Sprigle, S., Linden, M., Testing the validity of erythema detection algorithm. J Rehab Res Dev, 2001; 38(l):13–22.

    Google Scholar 

  92. Rodriguez, G.P., Claus-Walker, J., Kent, M.C., Garza, H.M., Collagen metabolite excretion as a predictor of bone-and skin-related complications in spinal cord injury. Arch Phy Med Rehabil, 1989; 70(6):442–4.

    Google Scholar 

  93. Ryan, T.J., Biochemical consequences of mechanical forces generated by distention and distortion. Am J Acad Dermatol, 1989; 21(1): 115–30.

    Google Scholar 

  94. Sacks, A.H. Theoretical prediction of a time-at-pressure curve for avoiding pressure sores. J Rehab Res Dev. 1989; 26(3):27–34.

    Google Scholar 

  95. Sanders J E. Thermal response of skin to cyclic pressure and pressure with shear: A technical note. J Rehab Res Dev. 2000; 37(5):511–515.

    Google Scholar 

  96. Sanders, J.E., Goldstein, B.S., Leotta, D.F. Skin Response to Mechanical Stress: Adaptation rather than Breakdown - A Review of the Literature. J Rehab Res Dev, 1995, 32(3):214–226.

    Google Scholar 

  97. Sandrow, R.E., Torg, J.S., Lapayowker, M.S., Reswick, E.J., Use of thermography in early diagnosis of neuropathic arthropathy in feet of diabetics. Clin Orthop, 1972; 88:21–33.

    Google Scholar 

  98. Schubert, V., Fagrell, B. Evaluation of the dynamic cutaneous post-ischaemic hyperaemia and thermal response in elderly subjects and in an area at risk for pressure sores, Clin Physio, 1991b, 11:169–182.

    Google Scholar 

  99. Schubert, V., Fagrell, B. Post-occlusive reactive hyperaemia and thermal response in the skin microcirculation of subjects with spinal cord injury, Scand Rehab Med, 1991a, 23: 33–40.

    Google Scholar 

  100. Schubert, V., The influence of local heating on skin microcirculation in pressure ulcers, monitored by a combined laser Doppler and transcutaneous oxygen tension probe. Clin Physiol, 2000; 20,6:413–421.

    Google Scholar 

  101. Seiler, W.O., Stahelin, H.B., Skin oxygen tension as a function of imposed skin pressure. Implication for decubitus ulcer formation. J Am Geriat Soc, 1979; 27:298–301.

    Google Scholar 

  102. Sumiya, T., Kawamura, K., Tokuhiro, A., Takechi, H., Ogata, H. A survey of wheelchair use by paraplegic individuals in Japan. Part 2: Prevalence of pressure sores. Spinal Cord 1997;35:595–598.

    Google Scholar 

  103. Swartout, R., Compere, E.L., Ischiogluteal bursitis - the pain in the Arse, J.A.M.A., 1974; 227(5):551–552.

    Google Scholar 

  104. Tarn EWC, Mak AFT and Evans JH. Post Occlusive Hyperaemic Response of Tissue to Static and dynamic Loading. Archive of Physical Medicine and Rehabilitation. Paper in review. 2002b.

    Google Scholar 

  105. Tarn EWC, Mak AFT, Lam WN, Evans JH, Chow Y. Pelvic Movement and Interface Pressure Distribution during Manual Wheelchair Propulsion. Archive of Physical Medicine and Rehabilitation. Paper Accepted. 2002a.

    Google Scholar 

  106. Tsung YS, Insole Design Based on Pressure Distribution and Foot Shape under Different Weight Bearing Conditions. MPhil Thesis. The Hong Kong Polytechnic University. Kowloon, Hong Kong. 2002.

    Google Scholar 

  107. Van Marum, R.J., Meijer, J.H., Ribbe, M.W., The relationship between pressure ulcers and skin blood flow response after a local Provocation, Arch Phys Med Rehabil, 2002, 83:40–43.

    Google Scholar 

  108. Vannah WM and Childress DS, Indentor tests and finite element modeling of bulk muscular tissue in vivo, J. Rehabilitation Research and Development, Vol. 33(3): 239–252, 1996.

    Google Scholar 

  109. Williams, P. L., Warwick, R., Dyson, M., Bannister, L. H. eds., Gray’s Anatomy 37 edition, Churchill Livingstone, 1989.

    Google Scholar 

  110. Xakellis, G.C., Frantz, R.A., Arteaga, M., Meletiou, S., A comparison of changes in the transcutaneous oxygen tension and capillary blood flow in the skin with increasing compressive weights. Am J Phys Med Rehabil, 1991; 70(4):172–177.

    Google Scholar 

  111. Zhang J.D., Mak A.F.T., and Huang L.D. A Large Deformation Biomechanical Model for Pressure Ulcers. ASME Journal of Biomechanical Engineering, Vol 119: 406–408, 1997.

    Google Scholar 

  112. Zhang M and Mak A.F.T. Investigation of Load Transfer between a Transfemoral Residual Limb and a Prosthetic Socket. Annals of Biomedical Engineering. Paper in review. 2002.

    Google Scholar 

  113. Zhang M and Mak A.FT. In-Vivo Friction Properties of Human Skin. Prosthetics and Orthotics International. Vol 23: 135–141, 1999.

    Google Scholar 

  114. Zhang M. and Mak A.F.T. A Finite Element Analysis of the Load Transfer between an Above-Knee Residual Limb and Its Prosthetic Socket - the Roles of Interface Friction and the Distal-End Boundary Conditions. IEEE Trans Rehabilitation Engineering. Vol 4(4): 337–346, 1996.

    Google Scholar 

  115. Zhang M., Mak A.F.T. and Roberts V.C. Finite Element Modelling of Lower-Limb/Prosthetic Socket - A Survey of the Development in the First Decade. Med Engineering & Physics. Vol: 360–373. 1998.

    Google Scholar 

  116. Zhang M., Zheng Y.P., and Mak A.F.T. Estimating the Effective Young’s Modulus of Soft Tissues from Indentation Tests - Nonlinear Finite Element Analysis of Effects of Friction and Large Deformation. Medical Engineering and Physics. Vol 19: 512–517. 1997.

    Google Scholar 

  117. Zheng YP. and Mak A.F.T. An Ultrasound Indentation System for Biomechanical Properties Assessment of Soft Tissues In-Vivo. IEEE Trans on Biomedical Engineering. Vol 43(9): 912–918, 1996.

    Google Scholar 

  118. Zheng Y.P. and Mak A.F.T. Extraction of Quasilinear Viscoelastic Parameters for Lower Limb Soft Tissues from Manual Indentation Experiment. ASME J. Biomechanical Engr. Vol 121(3): 330–339, 1999b.

    Google Scholar 

  119. Zheng Y.P. and Mak A.F.T., Effective Elastic Properties for Lower Limb Soft Tissues from Manual Indentation Experiment. IEEE Transactions on Rehabilitation Engineering Vol. 7(3): 257–267, 1999a.

    Google Scholar 

  120. Zheng Y.P., Choi Y.K.C., Wong K., Chan S. and Mak A.F.T. Biomechanical Assessment of Plantar Foot Tissue in Diabetic Patients Using an Ultrasound Indentation System. Ultrasound in Med & Biol. Vol 26(3): 451–456, 2000.

    Google Scholar 

  121. Zheng Y.P, Mak A.F.T., and Lue P.K. Objective Assessment of Limb Tissue Elasticity: Development of a Manual Indentation Procedure. J. Rehab Res & Development. Vol. 36(2): 71–85, 1999.

    Google Scholar 

  122. Zheng YP, Mak AFT, Lau KP, and Qin L. An Ultrasound Measurement for In Vitro Depth-Dependent Equilibrium Strain of Articular Cartilage in Compression. Physics in Medicine & Biology. Vol 47: 1–16.2002.

    Google Scholar 

  123. Zheng YP, Mak AFT, Zhang M, Leung AKL. State-of-the-Art Methods for Residual Limb Assessment: A Review. J. Rehab. Res. & Dev. Vol 38(5): 487–504, 2001.

    Google Scholar 

  124. Ziegert JC and Lewis JL. In-vivo mechanical properties of soft tissues covering bony prominences. J Biomech Eng Vol. 100: 194–201, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Mak, A.F.T., Tarn, E.W.C., Tsung, B.Y.S., Zhang, M., Zheng, Y.P., Zhang, J.D. (2003). Biomechanics of Body Support Surfaces: Issues of Decubitus Ulcer. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics