Skip to main content

Biomechanics of Ligaments: From Molecular Biology to Joint Function

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

Ligaments are highly specialized connective tissues that connect bones and transfer forces to mediate smooth movement of diarthrodial joints during normal activities. They also limit excessive displacements between the bones at high external loads. Ruptures of ligaments due to excessively high loads experienced during sports and accidents can upset the dynamic balance between the mobility and stability of a joint and result in abnormal kinematics. This can potentially cause damage to other soft tissues of the joint and eventually lead to pain, morbidity and osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyasaka, KC, Daniel, DM, Stone, ML, et al., The incidence of knee ligament injuries in the general population. Am J Knee Surg, 1991. 4: 3–8.

    Google Scholar 

  2. Beaty, J, ed. Knee and leg: soft tissue trauma. Orthopaedic knowledge update. Vol. 6. 1999, American Academy of Orthopaedic Surgeons: Rosemont, IL. 533.

    Google Scholar 

  3. Woo, SL-Y, Inoue, M, McGurk-Burleson, E, et al., Treatment of the medial collateral ligament injury. II: Structure and function of canine knees in response to differing treatment regimens. Am J Sports Med, 1987. 15(1): 22–9.

    Google Scholar 

  4. Frank, C, Woo, SL-Y, Amiel, D, et al., Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med, 1983. 11(6): 379–89.

    Google Scholar 

  5. Inoue, M, McGurk-Burleson, E, Hollis, JM, et al., Treatment of the medial collateral ligament injury. I: The importance of anterior cruciate ligament on the varus-valgus knee laxity. Am J Sports Med, 1987. 15(1): 15–21.

    Google Scholar 

  6. Scheffler, SU, Clineff, TD, Papageorgiou, CD, et al., Structure and function of the healing medial collateral ligament in a goat model. Ann Biomed Eng, 2001. 29(2): 173–80.

    Google Scholar 

  7. Niyibizi, C, Kavalkovich, K, Yamaji, T, et al., Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surg Sports Traumatol Arthrosc, 2000. 8(5): 281–5.

    Google Scholar 

  8. Woo, SL-Y, Niyibizi, C, Matyas, J, et al., Medial collateral knee ligament healing. Combined medial collateral and anterior cruciate ligament injuries studied in rabbits. Acta Orthop Scand, 1997. 68(2): 142–8.

    Google Scholar 

  9. Hildebrand, KA, Woo, SL-Y, Smith, DW, et al., The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament. An in vivo study. Am J Sports Med, 1998. 26(4): 549–54.

    Google Scholar 

  10. Jia, F, Shimomura, T, Niyibizi, C, et al. Regulating type III collagen gene expression using antisense gene therapy, in Trans Orthop Res Soc. 2002. Dallas, TX.

    Google Scholar 

  11. Musahl, V, Abramowitch, SD, Gilbert, TW, et al., The use of porcine SIS to enhance the healing of the MCL: A functional tissue engineering study in rabbits.J Orthop Res, 2002. In revision.

    Google Scholar 

  12. Nakamura, N, Hart, DA, Boorman, RS, et al., Decorin antisense gene therapy improves functional healing of early rabbit ligament scar with enhanced collagen fibrillogenesis in vivo. J Orthop Res, 2000. 18(4): 517–23.

    Google Scholar 

  13. Shimomura, T, Jia, F, Niyibizi, C, et al. Antisense oligonucleotides reduced type V collagen mRNA expression in human patellar tendon fibroblasts. in Engineering Tissue Growth Conference. 2002. Pittsburgh, PA.

    Google Scholar 

  14. Woo, SL-Y, Hildebrand, K, Watanabe, N, et al., Tissue engineering of ligament and tendon healing. Clin Orthop, 1999. 367 Suppl: S312–23.

    Google Scholar 

  15. Kannus, P and Jarvinen, M, Conservatively treated tears of the anterior cruciate ligament. Long-term results. J Bone Joint Surg Am, 1987. 69(7): 1007–12.

    Google Scholar 

  16. Noyes, FR, Mooar, PA, Matthews, DS, et al., The symptomatic anterior cruciate-deficient knee. Part I: The long-term functional disability in athletically active individuals. J Bone Joint Surg Am, 1983. 65 (2): 154–62.

    Google Scholar 

  17. Aglietti, P, Buzzi, R, Giron, F,et al., Arthroscopic-assisted anterior cruciate ligament reconstruction with the central third patellar tendon. A 5–8-year follow-up. Knee Surg Sports Traumatol Arthrosc, 1997. 5(3): 5–8.

    Google Scholar 

  18. Colombet, P, Allard, M, Bousquet, V, et al., Anterior cruciate ligament reconstruction using four-strand semitendinosus and gracilis tendon grafts and metal interference screw fixation. Arthroscopy, 2002. 18 (3): 232–7.

    Google Scholar 

  19. Aune, AK, Holm, I, Risberg, MA, et al., Four-strand hamstring tendon autograft compared with patellai tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-yeai follow-up. Am J Sports Med, 2001. 29(6): 722–8.

    Google Scholar 

  20. Anderson, AF, Snyder, RB, and Lipscomb, AB, Jr., Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods. Am J Sports Med, 2001. 29(3): 272–9.

    Google Scholar 

  21. Bach, BR, Jr., Tradonsky, S, Bojchuk, J, et al., Arthroscopically assisted anterior cruciate ligament reconstruction using patellar tendon autograft. Five-to nine-year follow-up evaluation. Am J Sports Med, 1998. 26(1): 20–9.

    Google Scholar 

  22. J omha, NM, Pinczewski, LA, Clingeleffer, A, et al., Arthroscopic reconstruction of the anterior cruciate ligament with patellar-tendon autograft and interference screw fixation. The results at seven years. J Bone Joint Surg Br, 1999. 81(5): 775–9.

    Google Scholar 

  23. Ritchie, JR and Parker, RD, Graft selection in anterior cruciate ligament revision surgery. Clin Orthop,1996 (325): 65–77.

    Google Scholar 

  24. Woo, SL-Y, An, KN, Arnoczky, SP, et al., Anatomy, biology, and biomechanics of tendon, ligament, and meniscus, in Orthopaedic Basic Science, S.R. Simon, Editor. 1994, Am Acad Orthop Surg: Rosemont, IL. 45–87.

    Google Scholar 

  25. Weiss, JA, Woo, SL-Y, Ohland, KJ, et al., Evaluation of a new injury model to study medial collateral ligament healing: Primary repair versus nonoperative treatment. J Orthop Res, 1991. 9(4): 516–28.

    Google Scholar 

  26. Woo, SL-Y, Danto, MI, Ohland, KJ, et al., The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments: a comparative study with two existing methods. J Biomech Eng, 1990. 112(4): 426–31.

    Google Scholar 

  27. Woo, SL-Y, Gomez, MA, and Akeson, WH, The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J Biomech Eng, 1981. 103(4): 293–8.

    Google Scholar 

  28. Fung, YC, Stress strain history relations of soft tissues in simple elongation., in Biomechanics: Its Foundations and Objectives, Y.C. Fung, N. Perrone, and M. Anliker, Editors. 1972, Prentice Hall: Englewood Cliffs, NJ. 181–207.

    Google Scholar 

  29. Kwan, MK, Lin, TH, and Woo, SL-Y, On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech, 1993. 26(4–5): 4–5.

    Google Scholar 

  30. Pipkin, AC and Rogers, TC, A nonlinear integral representation for viscoelastic behavior. J Mech Phys Solids, 1968. 16: 59–74.

    MATH  Google Scholar 

  31. Johnson, GA, Livesay, GA, Woo, SL-Y, et al., A single integral finite strain viscoelastic model of ligaments and tendons. J Biomech Eng, 1996. 118(2): 221–6.

    Google Scholar 

  32. Woo, SL-Y, Johnson, GA, and Smith, BA, Mathematical modeling of ligaments and tendons. J Biomech Eng, 1993. 115(4B): 468–73.

    Google Scholar 

  33. Quapp, KM and Weiss, JA, Material characterization of human medial collateral ligament. J Biomech Eng, 1998. 120(6): 757–63.

    Google Scholar 

  34. Weiss, JA, Gardiner, JC, and Bonifasi-Lista, C, Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech, 2002. 35(7): 943–50.

    Google Scholar 

  35. Grood, ES and Suntay, WJ, A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng, 1983. 105(2): 136–44.

    Google Scholar 

  36. Chao, EY, Justification of triaxial goniometer for the measurement of joint rotation. J Biomech, 1980. 13(12): 989–1006.

    Google Scholar 

  37. Fujie, H, Mabuchi, K, Woo, SL-Y, et al., The use of robotics technology to study human joint kinematics: a new methodology. J Biomech Eng, 1993. 115(3): 211–7.

    Google Scholar 

  38. Fujie, H, Livesay, GA, Woo, SL-Y, et al., The use of a universal force-moment sensor to determine in-situ forces in ligaments: a new methodology. J Biomech Eng, 1995. 117(1): 1–7.

    Google Scholar 

  39. Rudy, TW, Livesay, GA, Woo, SL-Y, et al., A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech, 1996. 29(10): 1357–60.

    Google Scholar 

  40. Livesay, GA, Rudy, TW, Woo, SL-Y, et al., Evaluation of the effect of joint constraints on the in situ force distribution in the anterior cruciate ligament. J Orthop Res, 1997. 15(2): 278–84.

    Google Scholar 

  41. Fujie, H, Livesay, GA, Fujita, M, et al., Forces and moments in six-DOF at the human knee joint: mathematical description for control. J Biomech, 1996. 29(12): 1577–85.

    Google Scholar 

  42. Paul, RP, Static forces, in Robot manipulators: Mathematics, programming, and control. 1981, MIT Press: Cambridge, MA. 217–220.

    Google Scholar 

  43. Livesay, GA, Fujie, H, Kashiwaguchi, S, et al., Determination of the in situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng, 1995. 23(4): 467–74.

    Google Scholar 

  44. Lewis, JL, Lew, WD, and Schmidt, J, A note on the application and evaluation of the buckle transducer for the knee ligament force measurement. J Biomech Eng, 1982. 104(2): 125–8.

    Google Scholar 

  45. Ahmed, AM, Burke, DL, and Hyder, A, Force analysis of the patellar mechanism. J Orthop Res, 1987. 5 (1): 69–85.

    Google Scholar 

  46. Holden, JP, Grood, ES, Korvick, DL, et al., In vivo forces in the anterior cruciate ligament: direct measurements during walking and trotting in a quadruped. J Biomech, 1994. 27(5): 517–26.

    Google Scholar 

  47. Markolf, KL, Gorek, JF, Kabo, JM, et al., Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J Bone Joint Surg Am, 1990. 72(4): 557–67.

    Google Scholar 

  48. Hollis, JM, Takai, S, Adams, DJ, et al., The effects of knee motion and external loading on the length of the anterior cruciate ligament (ACL): a kinematic study. J Biomech Eng, 1991. 113(2): 208–14.

    Google Scholar 

  49. Takai, S, Woo, SL, Livesay, GA, et al., Determination of the in situ loads on the human anterior cruciate ligament. J Orthop Res, 1993. 11(5): 686–95.

    Google Scholar 

  50. Butler, DL, Noyes, FR, and Grood, ES, Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am, 1980. 62(2): 259–70.

    Google Scholar 

  51. Beynnon, BD, Fleming, BC, Johnson, RJ, et al., Anterior cruciate ligament strain behavior during rehabilitation exercises in vivo. Am J Sports Med, 1995. 23(1): 24–34.

    Google Scholar 

  52. Sakane, M, Fox, RJ, Woo, SL-Y, et al., In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res, 1997. 15(2): 285–93.

    Google Scholar 

  53. Wong, EK, In-Situ Forces in the Bundles of the ACL during Simulated Joint Motions: An Experimental and Computational Approach, in Bioengineering. 2000, University of Pittsburgh: Pittsburgh. 1–77.

    Google Scholar 

  54. Kanamori, A, Woo, SL-Y, Ma, CB, et al., The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy,2000. 16(6): 633–9.

    Google Scholar 

  55. Lyon, RM, Akeson, WH, Amiel, D, et al., Ultrastructural differences between the cells of the medical collateral and the anterior cruciate ligaments. Clin Orthop, 1991 (272): 279–86.

    Google Scholar 

  56. Gomez, MA, Woo, SL-Y, Inoue, M, et al., Medial collateral ligament healing subsequent to different treatment regimens. J Appl Physiol, 1989. 66(1): 245–52.

    Google Scholar 

  57. Frank, C, McDonald, D, Bray, D, et al., Collagen fibril diameters in the healing adult rabbit medial collateral ligament. Connect Tissue Res, 1992. 27(4): 251–63.

    Google Scholar 

  58. O’Donoghue, DH, An analysis of end results of surgical treatment of major injuries to the ligaments of the knee. J Bone Joint Surg Am, 1955. 37-A(l): 1–13.

    Google Scholar 

  59. Indelicato, PA, Non-operative treatment of complete tears of the medial collateral ligament of the knee. J Bone Joint Surg Am, 1983. 65(3): 323–9.

    Google Scholar 

  60. Woo, SL-Y, Young, EP, Ohland, KJ, et al., The effects of transection of the anterior cruciate ligament on healing of the medial collateral ligament. A biomechanical study of the knee in dogs. J Bone Joint Surg Am, 1990. 72(3): 382–92.

    Google Scholar 

  61. Ma, CB, Papageogiou, CD, Debski, RE, et al., Interaction between the ACL graft and MCL in a combined ACL+MCL knee injury using a goat model. Acta Orthop Scand, 2000. 71(4): 387–93.

    Google Scholar 

  62. Yamaji, T, Levine, RE, Woo, SL-Y, et al., Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits. J Orthop Res, 1996. 14(2): 223–7.

    Google Scholar 

  63. Ohno, K, Pomaybo, AS, Schmidt, CC, et al., Healing of the medial collateral ligament after a combined medial collateral and anterior cruciate ligament injury and reconstruction of the anterior cruciate ligament: Comparison of repair and nonrepair of medial collateral ligament tears in rabbits. J Orthop Res, 1995. 13(3): 442–9.

    Google Scholar 

  64. Shelbourne, KD, Klootwyk, TE, Wilckens, JH, et al., Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med, 1995. 23(5): 575–9.

    Google Scholar 

  65. Larson, RL, Combined instabilities of the knee. Clin Orthop, 1980 (147): 68–75.

    Google Scholar 

  66. Jokl, P, Kaplan, N, Stovell, P, et al., Non-operative treatment of severe injuries to the medial and anterior cruciate ligaments of the knee. J Bone Joint Surg Am, 1984. 66(5): 741–4.

    Google Scholar 

  67. Murphy, PG, Loitz, BJ, Frank, CB, et al., Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochem Cell Biol, 1994. 72(9–10): 9–10.

    Google Scholar 

  68. Marui, T, Niyibizi, C, Georgescu, HI, et al., Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res, 1997. 15(1): 18–23.

    Google Scholar 

  69. Scherping, SC, Jr., Schmidt, CC, Georgescu, HI, et al., Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Connect Tissue Res, 1997. 36(1): 1–8.

    Google Scholar 

  70. Schmidt, CC, Georgescu, HI, Kwoh, CK, et al., Effect of growth factors on the proliferation of fibroblasts from the medial collateral and anterior cruciate ligaments. J Orthop Res, 1995. 13(2): 184–90.

    Google Scholar 

  71. Celechovsky, C, Niyibizi, C, Watanabe, N, et al. Analysis of collagens synthesized by cells harvested from MCL in the early stages of healing. in Trans Orthop Res Soc. 2001. San Fransisco, CA.

    Google Scholar 

  72. Hildebrand, KA, Deie, M, Allen, CR, et al., Early expression of marker genes in the rabbit medial collateral and anterior cruciate ligaments: the use of different viral vectors and the effects of injury. J Orthop Res, 1999. 17(1): 37–42.

    Google Scholar 

  73. Linsenmayer, TF, Gibney, E, Igoe, F, et al., Type V collagen: molecular structure and fibrillar organization of the chicken al(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis. J Cell Biol, 1993. 121(5): 1181–9.

    Google Scholar 

  74. Kuc, IM and Scott, PG, Increased diameters of collagen fibrils precipitated in vitro in the presence of decorin from various connective tissues. Connect Tissue Res, 1997. 36(4): 287–96.

    Google Scholar 

  75. Jia, F, Shimomura, T, Westcott, A, et al. Effects of antisense oligonucleotides with different target sites on type III collagen gene expression in HPTFs in vitro. in Midwest Connective Tissue Workshop. 2001. Chicago, IL.

    Google Scholar 

  76. Sacks, MS and Gloeckner, DC, Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J Biomed Mater Res, 1999. 46(1): 1–10.

    Google Scholar 

  77. Badylak, S, Arnoczky, S, Plouhar, P, et al., Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop, 1999. 367 Suppl: S333–43.

    Google Scholar 

  78. Gomez, MA, Woo, SL-Y, Amiel, D, et al., The effects of increased tension on healing medial collateral ligaments. Am J Sports Med, 1991. 19(4): 347–54.

    Google Scholar 

  79. Huang, D, Chang, TR, Aggarwal, A, et al., Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng, 1993. 21(3): 289–305.

    Google Scholar 

  80. Eastwood, M, Mudera, VC, McGrouther, DA, et al., Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil Cytoskeleton, 1998. 40(1): 13–21.

    Google Scholar 

  81. Wang, JH and Grood, ES, The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect Tissue Res, 2000. 41(1): 29–36.

    Google Scholar 

  82. Wang, JH-C, Jia, F, Gilbert, TW, et al., Cell orientation determines the alignment of cell-produced collagenous matrix. J Biomech, 2003. 36(1): 97–102.

    Google Scholar 

  83. Arnoczky, SP, Warren, RF, and Ashlock, MA, Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. J Bone Joint Surg Am, 1986. 68(3): 376–85.

    Google Scholar 

  84. Fu, FH, Bennett, CH, Lattermann, C, et al., Current trends in anterior cruciate ligament reconstruction. Part 1: Biology and biomechanics of reconstruction. Am J Sports Med, 1999. 27(6): 821–30.

    Google Scholar 

  85. Rodeo, SA, Arnoczky, SP, Torzilli, PA, et al., Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am, 1993. 75(12): 1795–803.

    Google Scholar 

  86. Kartus, J, Magnusson, L, Stener, S, et al., Complications following arthroscopic anterior cruciate ligament reconstruction. A 2–5-year follow-up of 604 patients with special emphasis on anterior knee pain. Knee Surg Sports Traumatol Arthrosc, 1999. 7(1): 2–5.

    Google Scholar 

  87. Wilson, TW, Zafuta, MP, and Zobitz, M, A biomechanical analysis of matched bone-patellar tendon-bone and double-looped semitendinosus and gracilis tendon grafts. Am J Sports Med, 1999. 27(2): 202–7.

    Google Scholar 

  88. Woo, SL-Y, Hollis, JM, Adams, DJ, et al., Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med, 1991. 19(3): 217–25.

    Google Scholar 

  89. Loh, JC, Fukuda, Y, Tsuda, E, et al., Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o’clock and 10 o’clock femoral tunnel placement. Arthroscopy, 2002. Accepted.

    Google Scholar 

  90. Ishibashi, Y, Rudy, TW, Livesay, GA, et al., The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy, 1997. 13(2): 177–82.

    Google Scholar 

  91. Kurosaka, M, Yoshiya, S, and Andrish, JT, A biomechanical comparison of different surgical techniques of graft fixation in anterior cruciate ligament reconstruction. Am J Sports Med, 1987. 15(3): 225–9.

    Google Scholar 

  92. Rupp, S, Krauss, PW, and Fritsch, EW, Fixation strength of a biodegradable interference screw and a press-fit technique in anterior cruciate ligament reconstruction with a BPTB graft. Arthroscopy, 1997. 13(1): 61–5.

    Google Scholar 

  93. To, JT, Howell, SM, and Hull, ML, Contributions of femoral fixation methods to the stiffness of anterior cruciate ligament replacements at implantation. Arthroscopy, 1999. 15(4): 379–87.

    Google Scholar 

  94. Hoher, J, Livesay, GA, Ma, CB, et al., Hamstring graft motion in the femoral bone tunnel when using titanium button/polyester tape fixation. Knee Surg Sports Traumatol Arthrosc, 1999. 7(4): 215–9.

    Google Scholar 

  95. Tsuda, E, Fukuda, Y, Loh, JC, et al., The effect of soft-tissue graft fixation in anterior cruciate ligament reconstruction on graft-tunnel motion under anterior tibial loading. Arthroscopy, 2002. 18(9): 960–7.

    Google Scholar 

  96. Rodeo, SA, Suzuki, K, Deng, XH, et al., Use of recombinant human bone morphogenetic protein-2 toenhance tendon healing in a bone tunnel. Am J Sports Med, 1999. 27(4): 476–88.

    Google Scholar 

  97. Martinek, V, Latterman, C, Usas, A, et al., Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am, 2002. 84-A(7): 1123–31.

    Google Scholar 

  98. Woo, SL-Y, Kanamori, A, Zeminski, J, et al., The effectiveness of reconstruction of the anterior cruciate ligament with hamstrings and patellar tendon. A cadaveric study comparing anterior tibial and rotational loads. J Bone Joint Surg Am, 2002. 84-A(6): 907–14.

    Google Scholar 

  99. Musahl, V, Burkart, A, Debski, RE, et al., Accuracy of anterior cruciate ligament tunnel placement with an active robotic system: a cadaveric study. Arthroscopy, 2002. 18(9): 968–73.

    Google Scholar 

  100. Yagi, M, Wong, EK, Kanamori, A, et al., Biomechanical analysis of an anatomic anterior cruciate ligament reconstruction. Am J Sports Med, 2002. 30(5): 660–6.

    Google Scholar 

  101. Blankevoort, L and Huiskes, R, Validation of a three-dimensional model of the knee. J Biomech, 1996. 29(7): 955–61.

    Google Scholar 

  102. Li, G, Gil, J, Kanamori, A, et al., A validated three-dimensional computational model of a human knee joint. J Biomech Eng, 1999. 121(6): 657–62.

    Google Scholar 

  103. Wismans, J, Veldpaus, F, Janssen, J, et al., A three-dimensional mathematical model of the knee-joint. J Biomech, 1980. 13(8): 677–85.

    Google Scholar 

  104. Song, Y, Debski, RE, Musahl, V, et al. Stress distribution within the anteromedial and posterolateral bundles of ACL under anterior tibial load. in 10th Annual Symposium on Computational Methods in Orthopaedic Biomechanics. 2002. Dallas, TX.

    Google Scholar 

  105. Sherman, MF, Lieber, L, Bonamo, JR, et al., The long-term followup of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med, 1991. 19(3): 243–55.

    Google Scholar 

  106. Ohland, KJ, Woo, SL-Y, Weiss, J A, et al. Healing of combined injuries of the rabbit medial collateral ligament and its insertions: A long term study on the effects of conservative vs. surgical treatment. in ASME Adv Bioeng. 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Woo, S.LY., Hanford, S.D., Moon, D.K. (2003). Biomechanics of Ligaments: From Molecular Biology to Joint Function. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics