Skip to main content

Functional and Molecular Imaging Using Positron Emission Tomography

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

Positron emission tomography (PET) is a nuclear medicine imaging method in which radioisotopes are employed to label biochemical substrates for use as tracers to follow function and physiology inside living bodies. Its role as an important medical diagnostic imaging tool has been broadly accepted. More recently, its use as a basic biological imaging tool for study of fundamental biomedical processes in laboratories is being developed rapidly. PET technology involves production of radioisotopes using compact cyclotron, capture of photons by scintillation detectors or their comparable devices, processes of converting photons into electrical signals and in tum image data, reconstruction of images from projections, physiological modeling, image analysis, and applications in routine medical practice and in laboratory sciences. Recent advances in computing and detector technologies have made PET imaging quantitatively more reliable with high image quality. PET has become an important molecular imaging probe for assessing functional and physiological information at the cellular and molecular level. Examples of its use as a molecular imaging technology include clinical diagnosis and monitoring of responses to treatments, brain mapping, genetic studies, and drug discovery and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger H O and Rosental D J 1959 Scintillation camera and position camera Medical Radioisotope Scanning (Vienna: IAEA and WHO)

    Google Scholar 

  2. Beyer T, Townsend D W, Brim T, Kinahan P E, Charron M, Roddy R, Jerin J, Young J, Byars L and Nutt R 2000 A combined PET/CT scanner for clinical oncology. J Nucl Med. 41 1369–1379

    Google Scholar 

  3. Bergstrom M, Muhr C, Lundberg P O, and Langstrom B 1991 PET as a tool in the clinical evaluation of pituitary adenomas J. Nucl. Med. 32 610–615

    Google Scholar 

  4. Bremer C and Weissleder R 2001 In vivo imaging of gene expression Acad. Radiol. 8 15–23

    Article  Google Scholar 

  5. Brooks R A, Sank V J, Di Chiro G, Friauf W S, and Leighton S B 1980 Design of a high resolution positron emission tomograph: the Neuro-PET J. Comput. Assist. Tomogr. 4 5–13

    Article  Google Scholar 

  6. Brownell G L and Sweet W H 1953 Localization of brain tumors with positron emitters Nucleonics 11 40–45

    Google Scholar 

  7. Brownell G L and Burnham C A 1973 MGH positron camera Tomographic Imaging in Nuclear Medicine ed. G S Freedman (New York: The Society of Nuclear Medicine) pp. 154–164.

    Google Scholar 

  8. Brownell G L, Burnham C A, Chesler D A, Correia J.A., Correll J E, Hoop Jr. B, Parker J and Subramanyam R 1977 Transverse section imaging of radionuclide distribution in the heart, lung and brain Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine ed M M Ter-Pogossian, M E Phelps G L Brownell, J R Cox, D O Davis and R G Evans (Baltimore: University Park Press) pp.293–307

    Google Scholar 

  9. Casey M E, Dautet H, Waechter D, Lecomte R, Eriksson L and Schmand M 1998 An LSO block detector for PET using an avalanche photodiode array IEEE Nuclear Science Symposium 1998 Conference Record pp.1105–1108

    Google Scholar 

  10. Chen C T, Pelizzari C A, Chen G T Y, Cooper M D, and Levin D N 1987 Image analysis of PET data with the aid of CT and MR images. In Information processing in medical imaging, pp. 601–611.

    Google Scholar 

  11. Cherry S R, Shao Y, Silverman R W, Chatziioannou A, Meadows K, Siegel S, Farguhar T, Young J, Jones W F, Newport D, Moyers C, Andreaco M, Paulus M, Binkley D, Nutt R, and Phelps M E 1997 MicroPET: a high resolution PET scanner for imaging small animals IEEE Trans. Nucl. Sci. 44 1161–1166

    Article  Google Scholar 

  12. Cho Z H, Chan J K and Eriksson L 1976 Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclide distribution IEEE. Trans. Nucl. Sci. 23 613–623

    Article  Google Scholar 

  13. Cho Z H, and Faruhki M R 1977 Bismuth germanate as a potential scintillation detector in positron cameras J. Nucl. Med. 18 840–844

    Google Scholar 

  14. Coleman R E, Hoffman J M, Hanson M W, Sostman H D and Schold S C 1991 Clinical application of PET for the evaluation of brain tumors J. Nucl. Med. 32 616–622

    Google Scholar 

  15. Cook E H, Metz J, Cooper M, Chou J S and Leventhal B L 1992 Fenfluramine effects on cerebral metabolism [letter] Biological Psychiatry 31 1173–1174

    Article  Google Scholar 

  16. Cook E H, Metz J, Leventhal B L, Lebovitz M, Nathan M, Semerdjian S A, Brown T and Cooper M 1994 Fluoxetine effects on cerebral glucose metabolism. NeuroReport 5 1745–1748

    Article  Google Scholar 

  17. Cooper M, Metz J, de Wit H and Mukherjee J 1993 From the cradle to the grave: Alcohol and its effects upon the brain (editorial) J. Nucl. Med. 34 798–803

    Google Scholar 

  18. Cooper M, Metz J, de Wit H, Cook E, Lorenz J and Brown T 1998 Interclass drug effects and changes in regional brain glucose metabolism P sychopharmacology Bulletin 34 229–232

    Google Scholar 

  19. Cormack A M 1963 Representation of a function by its line integrals with some radiological applications J. Appl. Phys. 34 2722–2727

    Article  MATH  Google Scholar 

  20. Czernin J and Phelps M E 2002 Positron emiision tomography scanning: Current and future applications Annu. Rev. Med. 53 89–112

    Article  Google Scholar 

  21. Derenzo S E, Zaklad H and Budinger T F 1975 Analytical study of a high resolution positron ring detector system for transaxial reconstruction tomography J. Nucl. Med. 16 1166–1173

    Google Scholar 

  22. Derenzo S E, Budinger T F and Cahoon J L 1977 High resolution computed tomography for positron emitters IEEE Trans. Nucl. Sci. 24 544–558

    Article  Google Scholar 

  23. Derenzo S E, Budinger T F, Huesman R H, Cahoon J L and Vuletich T 1981 Imaging properties of a positron tomograph with 280 BGO crystals IEEE Trans. Nucl. Sci. 28 81–89.

    Article  Google Scholar 

  24. Derenzo S E 1981 Monte Carlo calculation of the detection efficiency of arrays of Nal(Tl), BGO, CsF, Ge, and plastic detectors for 511keV photons. IEEE Trans. Nucl. Sci. 28 131–136.

    Article  Google Scholar 

  25. deWit H, Metz J T, Wagner N and Cooper M D 1990 Behavioral and subjective effects of ethanol: Relationship to cerebral metabolism using PEt alcoholism: Clinical and Experimental Research 14 482–489

    Article  Google Scholar 

  26. de Wit H, Metz J T, Wagner N and Cooper M D 1991 Effects of diazepam on regional cerebral metabolic rate and mood in normal volunteers Neuropsychopharmacology 5 33–41

    Google Scholar 

  27. Eriksson L, Bohm C, Kesselber M, Litton J E, Bergstrom M and Blomquist G A 1985 A high resolution positron camera The metabolism of the human brain studied with positron emission tomography ed T Greitz, D H Ingvar and L Widen (New York: Raven Press) pp.33–46.

    Google Scholar 

  28. Fisher R S and Frost J J 1991 Epilepsy J. Nucl. Med. 32 651–659.

    Google Scholar 

  29. Fox P T and Raichle M E 1986 Proc. Natl. Acad. Sci. 83 1140–1144

    Article  Google Scholar 

  30. Gambhir S S, Barrio J R, Wu L, et al., 1998 Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J. Nucl. Med. 39 2003–2011

    Google Scholar 

  31. Gambhir S S, Barrio J R, Herschman H R and Phelps M E 1999 Assays for non-invasive imaging of reporter gene expression. Nucl Med Biol. 26 481–490

    Article  Google Scholar 

  32. Gambhir S S, Czernin J, Schwimmer J, Silverman D, Coleman R E and Phelps M E 2001 A Tabulated Summary of the FDG PET Literature J Nucl Med 42 1S–93S.

    Google Scholar 

  33. Goldstein R A and Willerson J T 1991 The clinical role of positron emission tomography for cardiology in the 1990s and beyond J. Nucl. Med. 32 606–609

    Google Scholar 

  34. Gould K L 1991 PET perfusion imaging and nuclear cardiology J. Nucl. Med. 32 579–606

    Google Scholar 

  35. Greenberg J, Reivich M, Alavi A et al., 1981 Metabolic mapping of functional activity in human subject with the [F-18]fluorodeoxyglucose technique Science 212 678–680

    Article  Google Scholar 

  36. Hoffman E J, Phelps M E, Mullani N A, Higgins C S and Ter-Pogossian M M 1976 Design and performance characteristics of a whole body transaxial tomograph J. Nucl. Med. 17 493–503

    Google Scholar 

  37. Hoffman E J, Ricci A R, van der Stee L M A M and Phelps M E 1983 ECAT III - Basic design considerations IEEE Trans. Nucl. Sci. 30 729–733

    Article  Google Scholar 

  38. Hounsfield G N 1973 Computerized transverse axial scanning (tomography) Part I. Description of system Br. J. Radiol. 46 1016–1022

    Article  Google Scholar 

  39. Ido T, Wan C N, Casella V, Fowler J S, Wolf A P, Reivich M and Kuhl D E 1978 Labeled 2-deoxy-D-glucose analogs, -labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and C-14-2-deoxy-2-fluoro-D-glucose’ The Journal of Labelled Compounds and Radiopharmaceuticals 14 175–182

    Article  Google Scholar 

  40. Jacob S, Kinnunen L H, Metz J T, Cooper M and McClintock M K 2001 Sustained human chemosignal unconsciously alters brain function NeuroReport 12 2391–2394

    Article  Google Scholar 

  41. Klimas M T 2002 Positron emission tomography and drug discovery: Contributions to the understanding of pharmacokinetics, mechanism of action and disease state characterization Mol. Imag. Biol. 4 311–337

    Article  Google Scholar 

  42. Kao C M, Pan X and Chen C T 2000 Accurate image reconstruction using DOI information and its implications for the development of compact PET systems IEEE Trans. Nucl. Sci. 47 1551–1560

    Article  Google Scholar 

  43. Kao C M and Chen C T 2002 A direct sinogram-restoration method for fast image reconstruction in compact DOI-PET systems IEEE Trans. Nucl. Sci. 49 208–214

    Article  Google Scholar 

  44. Levin D N, Pelizzari, C A, Chen, G T Y, Chen, C T, Cooper M D 1988 Retrospective geometric correlation of MR, CT, and PET images. Radiology 169 817–823.

    Google Scholar 

  45. Luker G D and Piwnica-Worms D R 2001 Molecular imaging in vivo with PET and SPECT Acad. Radiol. 8 4–14

    Article  Google Scholar 

  46. MacLaren D C, Gambhir S S, Satyamurthy N, et al., 1999 Repetitive non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6 785–791

    Article  Google Scholar 

  47. Melcher C L and Schweitzer J S 1992 Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator IEEE Trans. Nucl. Sci. 39 502–505

    Article  Google Scholar 

  48. Metz J T, de Wit H and Cooper M 1995 Effects of benzodiazepines on behavior, mood and regional cerebral metabolism In Volkow N and Biegon A (eds.), Sites of Drug Action in the Human Brain (CRC Press, New York) pp 49–64

    Google Scholar 

  49. Muehllehner G, Atkins F and Harper PV 1977 Positron camera with longitudinal and transverse tomographic ability Medical Radionuclide Imaging (Vienna: IAEA) 291

    Google Scholar 

  50. Mullani N A, Higgins C S, Hood JT and Currie CE 1978 PETT IV: design analysis and performance characteristics IEEE Trans. Nucl. Sci. 25 180–183.

    Article  Google Scholar 

  51. Nichol C and Kim E 2001 Molecular imaging and gene therapy J. Nucl. Med. 42 1368–1374

    Google Scholar 

  52. Nutt R 2002 The history of positron emission tomography Molecular Imaging and Biology 4 11–26

    Article  Google Scholar 

  53. Phelps M E, Hoffman E J, Mullani N A and Ter-Pogossian M M 1975 Application of annihilation coincidence detection to transaxial reconstruction tomography J. Nucl. Med. 16 210–224

    Google Scholar 

  54. Phelps M E, Hoffman E J, Mullani N A, Higgins C S and Ter-Pogossian M M 1976 Design considerations for a positron emission transaxial tomograph (PET III) IEEE Trans. Biomed. Eng. 23 516–522

    Google Scholar 

  55. Phelps M E, Hoffman E J, Huang S C and Kuhl D E 1978 ECAT: A new computerized tomographic imaging system for positron-emitting radio-pharmaceuticals J. Nucl. Med. 19 635–647

    Google Scholar 

  56. Phelps M E, Huang S C, Hoffman E J, Selin C, Sokoloff L and Kuhl D E 1979 Tomographic measurement of local cerebral glucose metabolic rate in humans with [l8F] 2-fluoro-2-deoxy-D-glucose: validation of method Annals of Neurology 6 371–388

    Article  Google Scholar 

  57. Phelps M E, Kuhl D E and Mazziotta J C 1981 Matebolic mapping of brain’s response to visual stimulation: Studies in man Science 211 1445–1448

    Article  Google Scholar 

  58. Phelps M E, Mazziotta, J C, Kehl DE et al., 1981a Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation Neurology 31 517–529

    Article  Google Scholar 

  59. Phelps M E, Mazziotta J C and Schelbert H R 1986 Positron Emission Tomography and Autoradiography (New York: Raven Press)

    Google Scholar 

  60. Phelps M E 2000 PET: The Merging of Biology and Imaging into Molecular Imaging J. Nucl. Med. 41 661–681

    Google Scholar 

  61. Phelps M E 2000a Positron emission tomography provides molecular imaging of biological processes Proceedings of the National Academy of Science 97 9226–9233

    Article  Google Scholar 

  62. Postner M I, Petersen S E, Fox P T and Raichle M E 1988 Localization of cognitive operations in the human brain Science 240 1827–1631

    Google Scholar 

  63. Postner M I and Raichle M E 1998 The neuroimaging of human brain function Proc. Natl. Acad. Sci. 95 763–764

    Article  Google Scholar 

  64. Postner M I and Raichle M E 1994 Images of Mind (Freeman, New York)

    Google Scholar 

  65. Raichle M E 1987 in Handbook of Physiology: The Nervous System V: Higher Functions of the Brain ed. F Plum (Am. Physiol. Soc. Bethesda, MD) pp. 643–674

    Google Scholar 

  66. Raichle M E 1998 Behind the scenes of functional brain imaging: A historical and physiological perspective Proc. Natl. Acad. Sci. 95 765–772

    Article  Google Scholar 

  67. Rankowitz S, Robertson J S, Higinbotham W A and Rosenblum M J 1962 Positron scanner for locating brain tumors The 1962 IRE Int. Conv. Rec. 10 49–56

    Google Scholar 

  68. Reivich M, Kuhl D E, Wolf A P, Greenberg J, Phelps M E, Ido T, Casella V, Fowler J S, Hoffman E J, Alavi A, Som P and Sokoloff L 1979 The [F-18]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man Circ. Res. 44 127–137

    Article  Google Scholar 

  69. Reivich M, Greenberg J, Alavi A, et al., 1979 The use of [F-18]fuorodeoxyglucose technique for mapping functional neural pathways in man Acta Neurol. Scand. 60(Suppl. 72) 198–199

    Google Scholar 

  70. Reivich M, Cobbs W, Rosenquist A et al., 1981 Abnormalities in local cerebral glucose metabolism in patients with visual field defects J. Cereh. Blood Flow Metab. 1 Suppl. (1) S471–S472

    Google Scholar 

  71. Robertson J S, Marr R B, Rosenblum B, Radeka V and Yamamoto Y L 1973 Thirty-two crystal positron transverse section detector Tomographic Imaging in Nuclear Medicine ed G S Freedman (New York: Society of Nuclear Medicine) pp.142–153

    Google Scholar 

  72. Saoudi A and Lecomte R 1998 A novel APD-based detector module for multi-modality PET/SPECT/CT scanners IEEE Nuclear Science Symposium 1998 Conference Record pp. 1089–1094

    Google Scholar 

  73. Schmand M, Eriksson L, Casey M, Andreaco M S, Melcher C, Wienhard K, Flugge G and Nutt R 1998 Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT IEEE Trans. Nucl. Sci. 45 3000–3006

    Article  Google Scholar 

  74. Schmand M, Dahlbom M, Eriksson L, Casey M E, Andreaco M S, Vagneur K, Phelps M E and Nutt R 1998 Performance of a LSO/NaI(Tl) phoswitch detector for a combined PET/SPECT imaging system J. Nucl. Med. 39 9P

    Google Scholar 

  75. Schwaiger M and Hicks R 1991 The clinical role of metabolic imaging of the heart by positron emission tomography J. Nucl. Med. 32 565–578.

    Google Scholar 

  76. Sokoloff L, Reivich M, Kennedy C, Des Rosiers M H, Patlak C S, Pettigrew K D, Sakurada D and Shinohara M 1977 The [l4C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat Journal of Neurochemistry 28 897–916.

    Article  Google Scholar 

  77. Strauss L G and Conti PS 1991 The applications of PET in clinical oncology J. Nucl. Med. 32 623–648.

    Google Scholar 

  78. Sweet W H 1951 The use of nuclear disintegration in diagnosis and treatment of brain tumors New England Journal of Medicine 245 875–878.

    Article  Google Scholar 

  79. Pelizzari C A, Chen G T Y, Spelbring D R, Weichselbaum R R, and Chen C T 1989 Accurate threedimensional registration of CT, PET, and/or MR images of the brain. Computer assisted tomography 13 20–26.

    Article  Google Scholar 

  80. Ter-Pogossian M M, Phelps M E, Hoffman E J and Muliani N A 1975 A positron-emission tomograph for nuclear imaging (PET) Radiology 114 89–98

    Google Scholar 

  81. Ter-Pogossian M M, Muliani N A, Hood J T, Higgins C S and Ficke D C 1978 Design considerations for a positron emission transverse tomography (PETT V) for imaging of the brain J. Comput. Assist. Tomogr. 2 539–544

    Article  Google Scholar 

  82. Ter-Pogossian M M, Raichle M E, and Sobel B E 1980 Positron-Emission Tomography Scientific American 243 170–181

    Article  Google Scholar 

  83. Thompson CJ, Yamamoto YL and Meyer E 1979 POSITOME II: High-efficiency positron imaging device for dynamic brain studies IEEE Trans. Nucl. Sci 26 583–589

    Article  Google Scholar 

  84. Townsend D W and Cherry S 2001 Combining anatomy and function: The path to true image fusion Eur Radiol. 11 1968–1974

    Article  Google Scholar 

  85. Wagner H N 1991 Clinical PET: Its time has come J. Nucl. Med. 32 561–564.

    Google Scholar 

  86. Weissleder R and Mahmood U 2001 Molecular imaging Radiology 219 316–333

    Article  Google Scholar 

  87. Wrenn Jr. F R, Good M L and Handler P 1951 The use of positron emitting radioisotopes for localization of brain tumors Science 113 525–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Chen, CT. et al. (2003). Functional and Molecular Imaging Using Positron Emission Tomography. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics