Skip to main content

The Past, Present And Future Of Magnetic Resonance Imaging

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

Since its invention three decades ago, magnetic resonance imaging (MRI) has evolved into an imaging modality that is routinely used for diagnostic imaging and has become an indispensable tool for in vivo biomedical research. While more and more applications of MRl are becoming mature and routine, advances in MRI continue to be made and are promising to expand the utility of MRI to many previously unimaginable areas. In this chapter, a review of MRI’s history and recent development will be provided, followed by an outlook on the future of MRl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.M. Purcell, H.C. Torrey and R.V. Pound. Resonance absorption by nuclear magnetic moments in solids. Phys. Rev. 69, 37, 1946.

    Article  Google Scholar 

  2. F. Bloch. Nuclear induction. Phys. Rev. 70, 460, 1946.

    Article  Google Scholar 

  3. J.M. Hutchison, R.J. Sutherland, and J.R. Mallard. NMR imaging: image recovery under magnetic fields with large nonuniformities. J. Phys. E: Scient. Instrum. 11, 217, 1978.

    Article  Google Scholar 

  4. P.C. Lauterbur. Image formation by induced local interactions: Examples employing NMR. Nature, 242, 190, 1973.

    Article  Google Scholar 

  5. J.T. Vaughan, M. Garwood, CM. Collins, H. Liu, L. DelaBarre, G. Adriany, P. Andersen, H. Merkle, R. Goebel, M.B. Smith MB and K. Ugurbil. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn. Reson. Med. 46, 24, 2001.

    Article  Google Scholar 

  6. M.A. Bernstein, J. Huston 3rd, C. Lin, G.F. Gibbs, and J. P. Felmlee. High-resolution intracranial and cervical MRA at 3.0T: technical considerations and initial experience. Magn. Reson. Med. 46, 955, 2001.

    Article  Google Scholar 

  7. Q.X. Yang, J. Wang, X. Zhang, CM. Collins, M.B. Smith, H. Liu, X.H. Zhu, J.T. Vaughan, K. Ugurbil and W. Chen. Analysis of wave behavior in lossy dielectric samples at high field Magn. Reson. Med. 47, 982, 2002

    Article  Google Scholar 

  8. R. Turner. Gradient coil design: A review of methods. Magn. Reson. Imag. 11, 904, 1993.

    Article  Google Scholar 

  9. P.B. Roemer, W.A. Edelstein, CE. Hayes, S.P. Souza, and O.M. Mueller. Magn. Reson. Med. 16, 192, 1980.

    Google Scholar 

  10. D. K. Sodickson and W.J. Manning. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med., 38, 591, 1997.

    Article  Google Scholar 

  11. U.K.P. Pruessmann, M. Weiger, M.B. Scheidegger, and P. Boesiger. SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med., 42, 952, 1999.

    Article  Google Scholar 

  12. A. Haase, J. Frahm, D. Matthaei, W. Hanicke, K.-D. Merboldt. FLASH Imaging: Rapid NMR Imaging Using Low Flip Angle Pulses. J. Magn. Reson. 67, 258, 1986.

    Google Scholar 

  13. G. Laub, and W.A. Kaiser. MR angiography with gradient motion rephrasing, J. Comput. Assist. Tomogr. 12, 377, 1988.

    Article  Google Scholar 

  14. CL. Dumoulin, S.P. Souza, M.F. Walker and W. Wogle. Three-dimensional phase contrast angiography. Magn. Reson. Med. 9, 139, 1989.

    Article  Google Scholar 

  15. A. Haase. Snapshot FLASH MRI: Application to T1, T2, and Chemical Shift Imaging. Magn. Reson. Med. 13, 77, 1990.

    Article  MathSciNet  Google Scholar 

  16. J.P. Mugler III, and J.R. Brookman. Three dimensional magnetization-prepared rapid gradient-echo imaging (3D MPRAGE. Magn. Reson. Med. 15, 152, 1990.

    Article  Google Scholar 

  17. P. Mansfield, A.A. Maudsley and T. Baines. Fast scan proton density imaging by NMR. J. Phys. E: Scient. Instrum. 9, 271, 1976.

    Article  Google Scholar 

  18. C.B. Ahn, J.H. Kim, and Z. H. Cho. High speed spiral-scan echo planar imaging. IEEE Trans. Med. Imag. 5, 2, 1986.

    Article  Google Scholar 

  19. M.S. Cohen and R.M. Weisskoff. Ultra-fast imaging. Magn. Reson. Imag. 9, 1, 1991.

    Article  Google Scholar 

  20. CH. Meyer, B.S. Hu, D. G. Nishimura, A. Macovski. Fast spiral coronary artery imaging. Magn. Reson. Med. 28, 202, 1992.

    Article  Google Scholar 

  21. J. Hennig, A. Nauerth and H. Friedburg. RARE imaging: A fast method for clinical MR. Magn. Reson. Med. 3, 823, 1986.

    Article  Google Scholar 

  22. J. Listerud, S. Einstein, and E. Outwater. First principles of fast spin echo. Magn. Reson. Quart. 8, 199, 1992.

    Google Scholar 

  23. D.K. Sodickson, C.A. McKenzie, M.A. Ohliger, E.N. Yeh, and M.D. Price. Recent advances in image reconstruction, coil sensitivity calibration, and coil array design for SMASH and generalized parallel MRI. Magma, 13, 158, 2002.

    Article  Google Scholar 

  24. B.R. Rosen, J.W. Belliveau, J.M. Vevea, and T.J. Brady. Perfusion imaging with NMR contrast agents. Magn. Reson. Med. 14, 249, 1990.

    Article  Google Scholar 

  25. J.A. Detre, J.S. Leigh, D.S. Williams, and A.P. Koretsky. Perfusion imaging. Magn. Reson. Med.23, 37, 1992.

    Article  Google Scholar 

  26. E. L. Barbier, A.C. Silva, S.G. Kim, and A.P. Koretsky. Perfusion imaging using dynamic arterial spin labeling (DASL). Magn. Reson. Med. 45, 1021, 2001.

    Article  Google Scholar 

  27. Kim, S.-G. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn. Reson. Med. 34, 293, 1995.

    Article  Google Scholar 

  28. K. K. Kwong, D.A. Chesler, R.M. Weisskoff, K.M. Donahue, T.L. Davis, L. Ostergaard, A. Campbell, B. R. Rosen. MR perfusion studies with Tl-weigted echo planar imaging. Magn. Reson. Med. 34, 878, 1995.

    Article  Google Scholar 

  29. M.E. Moseley, Y. Cohen, J. Mintorovitch, L. Chileuitt, H. Shimizu, J. Kucharczyk, M.F. Wendland, and P.R. Weinstein. Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2- weighted MRI and spectroscopy. Magn. Reson. Med. 14, 330, 1990.

    Article  Google Scholar 

  30. M.E. Moseley, Y. Cohen, J. Kucharczyk, J. Mintorovich, H.S. Asgari, M.F. Wendland, J. Tsuruda, and D. Norman. Diffusion-weighted MR imaging of anisotropic water diffusion in the central nervous system. Radiol.176, 439, 1990.

    Google Scholar 

  31. P.J. Basser, J. Mattiello, and D. LeBihan. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson., 103, 247, 1994.

    Article  Google Scholar 

  32. T.E. Conturo, N.F. Lori, T.S. Cull, E. Akbudak, A.Z. Snyder, J.S. Shimony, R.C. McKinstry, H. Burton, and M.E. Raichle. Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. U S A, 96, 10422,1999.

    Article  Google Scholar 

  33. S.D. Wolff and R.S. Balaban. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn. Reson. Med. 10, 135, 1989.

    Article  Google Scholar 

  34. Basser, P. J., Pajevic, S., Pierpaoli, C, Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magn Reson Med, 44(4), 625–632.

    Article  Google Scholar 

  35. R. Xue, PCM. van Zijl, B.J. Crain, M. Solaiyappan, and S. Mori. In vivo three-dimensional reconstruction of rat brain axonal projections by diffusion tensor imaging. Magn. Reson. Med. 42, 1123, 1999.

    Article  Google Scholar 

  36. S. Mori, B. Crain, V.P. Chacko, and P.C.M. van Zijl, P. C. M. Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265, 1999.

    Article  Google Scholar 

  37. A. Pfeifferbaum, and E.V. Sullivan. Microstructual but not macrostructual disruption of white matter in women with chronic alcoholism. Neurolmage, 15, 708, 2002.

    Article  Google Scholar 

  38. M. Bozzali, A. Falini, M. Franceschi, M. Cercignani, M. Zuffi, G. Scotti, G. Comi, and M. Filippi. White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry, 72(6), 742, 2002.

    Article  Google Scholar 

  39. J.W. Sandstede. Assessment of myocardial viability by MR imaging. Eur. Radiol. 13, 52, 2003.

    Article  Google Scholar 

  40. S.G. Kim, and K. Ugurbil, Functional magnetic resonance imaging of the human brain. J. Neurosci. Methods, 74:229, 1997.

    Article  Google Scholar 

  41. R.A. de Graaf. In vivo NMR spectroscopy: principles and techniques. Wiley, New York, 1998.

    Google Scholar 

  42. S. Ogawa, D.W. Tank, R. Menon, J.M. Ellermann, S.-G. Kim, H. Merkle, and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 1992. 89, 5951, 1992.

    Article  Google Scholar 

  43. K. K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.-M. Cheng, T.J. Brady, and B.R. Rosen, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA, 89, 5675, 1992.

    Article  Google Scholar 

  44. S. Ogawa, T.-M. Lee, A.R. Kay, and D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87, 9868, 1990.

    Article  Google Scholar 

  45. S. Ogawa, T.-M. Lee, A.S. Nayak, and P. Glynn, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68, 1990.

    Article  Google Scholar 

  46. P.T. Fox, and M.E. Raichle, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc. Natl. Acad. Sci. USA 83, 1140, 1986.

    Article  Google Scholar 

  47. R.S. Menon, D.C. Luknowsky, and J.S. Gati, Mental chronometry using latency-resolved functional MRI. Proc. Natl. Acad. Sci. USA 95, 10902, 1998.

    Article  Google Scholar 

  48. R.S. Menon, and S.G. Kim, Spatial and temporal limits in cognitive neuroimaging with fMRI. Trends Cog. Sci. 3, 207, 1999.

    Article  Google Scholar 

  49. R.L. Buckner, P.A. Bandettini, K.M. O’Craven, R.L. Savoy, S.E. Petersen, M.E. Raichle, and B.R. Rosen, Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14878, 1996.

    Article  Google Scholar 

  50. W. Richter, P.M. Andersen, A.P. Georgopoulos, and S.-G. Kim, Sequential activity in human motor areas during a delayed cued finger movement task studied by time-resolved fMRI. NeuroReport, 8, 1257, 1997.

    Article  Google Scholar 

  51. W. Richter, P.M. Andersen, A.P. Georgopoulos, and S.-G. Kim, Time-resolved fMRI of mental rotation. NeuroReport, 8, 3697, 1997.

    Article  Google Scholar 

  52. E. Zarahn, G. Aguirre, and M. D’Esposito, A trial-based experimental design for fMRI. Neuroimage, 6, 122, 1997.

    Article  Google Scholar 

  53. gawa interaction paper

    Google Scholar 

  54. Y.-J. Lin, and A.P. Koretsky. Manganese ion enhances Ti-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn. Reson. Med. 38, 378, 1997.

    Article  Google Scholar 

  55. T.Q. Duong, A.C. Silva, S.-P. Lee, and S.-G. Kim. Functional MRI of Calcium-Dependent Synaptic Activity: Cross Correlation With CBF and BOLD Measurements. Magn. Reson. Med. 43, 383, 2000.

    Article  Google Scholar 

  56. R. G. Pautler, and A.P. Koretsky. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage, 16, 441, 2002.

    Article  Google Scholar 

  57. M. Lewin, N. Carlesso, C.-H. Tung, X.-W. Tang, D. Cory, D.T. Scaden, and R. Weissleder. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotech. 18, 410, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Hu Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Hu, X. (2003). The Past, Present And Future Of Magnetic Resonance Imaging. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics