Skip to main content

Enhanced Contrast Detection Using Ultrasonic Pulse Inversion Imaging

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

Ultrasonic contrast agents have been widely used to enhance the detection of blood. Most contrast agents are microbubble-based and act as harmonic oscillators when the impinging sound wave is near the bubble’s resonant frequency. An important application of ultrasonic contrast agents is to enhance the contrast between normal and diseased tissue. Contrast agents are also used to outline vessels and heart chambers. Despite the great potential, clinical applications of contrast agents are often limited because the tissue also produces significant echoes, thus degrading the contrast-to-tissue ratio. This paper reports pulse-inversion (PI) fundamental imaging for the enhancement of contrast detection. The PI technique involves two firings with inverted waveforms. When the returning echoes from the two firings are summed, the residual signal from the tissue is limited to even-order harmonics, but the fundamental signal from the bubbles is not cancelled completely, because the bubbles’ reaction under compression is different from that under rarefaction. The experimental results from PI imaging indicate that the contrast-to-tissue ratio is significantly enhanced compared to either conventional fundamental imaging or second-harmonic imaging. However, the performance of the nonlinear contrast detection is degraded when the frequency of the impinging sound wave is far from the bubble’s resonant frequency. The PI fundamental technique is highly sensitive to tissue motion, because the fundamental tissue signal is not cancelled in the presence of motion. We concluded that PI fundamental imaging is effective for contrast detection if the bubble’s resonant frequency is properly selected and corrections are made for motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Goldberg “The Beginnings of Ultrasound Contrast,”Ultrasound Contrast Agents,Pl-8, 1997.

    Google Scholar 

  2. R. Gramiak, P. M. Shah, and D. H. Kramer, “Ultrasound Cardiography Contrast Studies in Anatomy And Function,” Radiology, 92, pp. 939–948, 1969.

    Google Scholar 

  3. J. Ophir and K. J. Parker, “Contrast Agents in Diagnostic Ultrasound,” Ultrasound Med. Biol., 15, pp. 319–333, 1989.

    Google Scholar 

  4. N. de Jong, “Improvements in Ultrasound Contrast Agents,” IEEE Eng. Med. Biol., vol. 15, no. 6, pp. 72–82, 1996.

    Google Scholar 

  5. J. Chomas, P. A. Dayton, K. E. Morgan, and K. W. Ferrara, “Optimization of Microbubble Destruction, ” Proc. IEEE Ultrason. Symp., pp. 1689–1692, 1999.

    Google Scholar 

  6. P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. H. Brandenburger, and K. W. Ferrara, “Optical and [Acoustical] Observations of the Effects of Ultrasound on Contrast Agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 1, pp. 220–232, Jan. 1999.

    Google Scholar 

  7. B. Schrope and V. Newhouse, “Second Harmonic Ultrasonic Blood Perfusion Measurement,” Ultrasound Med. Biol., Vol. 19, No. 7, pp. 567–579, 1993.

    Google Scholar 

  8. C. A. Cain,“Ultrasonic Reflection Mode Imaging of the Nonlinear Parameter B/A: I. A Theoretical Basis,”J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28–32, July 1986.

    MathSciNet  Google Scholar 

  9. R. T. Beyer and S. V. Letcher, Nonlinear acoustics. New York: Academic, 1969, pp. 202–230.

    Google Scholar 

  10. M. E. Haran and B. D. Cook, “Distortion of Finite Amplitude Ultrasound in Lossy Media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774–779, March 1983.

    Google Scholar 

  11. P. N. Burns, J. Powers, Simpson, D. Simpson, A. Brezina, A. Kolin, C. Chin, V. Uhlendorf and T. Fritzsch, “Harmonic Power Mode Doppler Using Microbubble Contrast Agents: An Improved Method for Small Vessel Flow Imaging,” Proc. IEEE Ultrason. Symp., pp. 1547–1550, 1994.

    Google Scholar 

  12. S. Krishnan, J. D. Hamilton and M. O’Donnell, “Suppression of Propagating Second Harmonic in Ultrasound Contrast Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 3, pp. 704–711, May 1998.

    Google Scholar 

  13. J. Kirkhorn, P. J. A. Frinking, N. de Jong and H. Torp, “Three-Stage Approach to Ultrasound Contrast Detection,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 4, pp. 1013–1022, July 2001.

    Google Scholar 

  14. W. T. Shi, “Pressure Dependence of Subharmonic Signals from Contrast Microbubbles,” Ultrasound Med. Biol., Vol. 25, No. 2, pp. 275–283, 1999.

    Google Scholar 

  15. B. Haider, R. Y. Chiao, “Higher Order Nonlinear Ultrasonic Imaging,” Proc. IEEE Ultrason. Symp., pp. 1527–1531, 1999.

    Google Scholar 

  16. P. J. Phillips, “Contrast Pulse Sequences: Imaging Nonlinear Microbubble,” Proc. IEEE Ultrason. Symp., pp. 1739–1745, 2001.

    Google Scholar 

  17. C. C. Shen and P. C. Li, “Harmonic Leakage and Image Quality Degradation in Tissue Harmonic Imaging, ” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, no. 3, pp. 728–736, May 2001.

    MathSciNet  Google Scholar 

  18. D. H. Simpson and P. N. Burns, “Pulse Inversion Doppler: A New Method for Detecting Nonlinear Echoes from Microbubble Contrast Agents,” Proc. IEEE Ultrason. Sympt., 1997, pp. 1597–1600.

    Google Scholar 

  19. D. H. Simpson, C. T. Chin and P. N. Burns, “Pulse Inversion Doppler: A New Method for Detecting Nonlinear Echoes from Microbubble Contrast Agents,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 2, pp. 372–382, March 1999.

    Google Scholar 

  20. P. Jiang, Z. Mao and J. C. Lazenby, “A New Harmonic Imaging Scheme with Better Fundamental Frequency Cancellation and Higher Signal-to-Noise Ratio,” Proc. IEEE Ultrason. Sympt., 1998, pp. 1589–1594.

    Google Scholar 

  21. L. Hoff, “Nonlinear Response of [Sonazoid.] Numerical Simulation about Pulse-Inversion and Subharmonics,” Proc. IEEE Ultrason. Symp., pp. 1885–1888, 2000.

    Google Scholar 

  22. K. Morgan, M. Averkiou and K. Ferrara, “The Effect of the Phase of Transmission on Contrast Agent Echoes,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 4, pp. 872–875, July 1998.

    Google Scholar 

  23. M. Averkiou, “Ultrasonic Nonlinear Imaging at Fundamental Frequencies,” US Patent 6,319,203, 2001.

    Google Scholar 

  24. F. Forsberg, “Physics of Ultrasound Contrast Agents,” Ultrasound Contrast Agents, P9–20, 1997.

    Google Scholar 

  25. V. Uhlendorf and C. Hoffman, “Nonlinear Acoustical Response of Coated Microbubbles in Diagnostic Ultrasound,” Proc. IEEE Ultrason. Symp., pp. 1559–1562, 1994.

    Google Scholar 

  26. T. Christopher, “Finite Amplitude Distortion-Based Inhomogeneous Pulse Echo Ultrasonic Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, no. 1, pp. 125–139, Jan. 1997.

    Google Scholar 

  27. P. C. Li and C. C. Shen, “Effects of Transmit Focusing on Finite Amplitude Distortion Based Second Harmonic Generation,” Ultrasonic Imaging, Vol. 21, pp. 243–258, 1999.

    Google Scholar 

  28. D. L. Liu and R. C. Waag, “Propagation and Backpropagation for Ultrasonic Wavefront Design,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, no. 1, pp. 1–12, Jan. 1997.

    Google Scholar 

  29. J. W. Goodman, Introduction to Fourier Optics New York: McGraw-Hill, 1968.

    Google Scholar 

  30. P. T. Christopher and K. J. Parker, New Approaches to Nonlinear Diffractive Field Propagation, J.Acoust. Soc. Amer., vol. 90, no. 1, pp. 488–499, July 1991.

    Google Scholar 

  31. W. K. Law, L. A. Frizzell and F. Dunn, “Determination of the Nonlinearity Parameter B/A of Biological Media,” Ultrasound Med. Biol., vol. 11, no. 2, pp. 307–318, 1985.

    Google Scholar 

  32. C. C. Shen and P. C. Li, “Motion Artifacts of Pulse Inversion-Based Tissue Harmonic Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 9, pp. 1203–1211, Sep. 2002.

    Google Scholar 

  33. G. R. Lockwood, D. H. Turnbull, and D. A. Christopher et al. “Beyond 30 MHz - Applications of High Frequency Ultrasound Imaging,” IEEE Eng. Med. Bio. Mag., pp. 60–71, 1996.

    Google Scholar 

  34. D. A. Knapik, B. Starkoski, and C. J. Pavlin et al., “ A 100–200 MHz Ultrasound Biomicroscope,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 6, pp. 1540–1549, 2000.

    Google Scholar 

  35. F. S. Foster, C. J. Pavlin, and K. A. Harasiewicz et al., “Advances in Ultrasound Biomicroscopy,” Ultrasound in Med. and Biol., vol. 26, no. 1, pp. 1–27, 2000.

    Google Scholar 

  36. C. K. Yeh and P. C. Li, “Doppler Angle Estimation Using AR Modeling”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 6, pp. 683–692, Jun. 2002.

    Google Scholar 

  37. C. C. Church, “The effects of an Elastic Solid Surface Layer on the Radial Pulsation of Gas Bubbles,” J. Acoust. Soc. Amer., vol. 97, no. 3, pp. 1510–1521, March 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Li, PC., Shen, CC. (2003). Enhanced Contrast Detection Using Ultrasonic Pulse Inversion Imaging. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics