Skip to main content

Ventricular Assist Devices: Current Status and Future Perspective

  • Conference paper
Frontiers in Biomedical Engineering

Abstract

The concept of mechanical circulatory assistance was established in the late 1950s and early 1960s with the first successful clinical use of the heart-lung machine for cardiopulmonary bypass. Attempts at developing total replacement artificial hearts and ventricular assist devices (VADs) were initiated in 1960s. The VADs, unlike total artificial hearts, which entirely replace the native heart, are mechanical pumps designed to augment the function of one or more chambers of the failing heart. A typical VAD is connected to the patient’s native circulation through a pair of tubes, one drawing blood from either the atrium or ventricle, and the other expelling blood into the arterial system. The VADs that are intended for long-term use are designed to be fully implanted in the body, with power transmitted across the skin. Devices intended for short-term use may reside outside the body, with blood traveling through tubes into the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiomed Inc. AbioCor Clinical Trial Information. 2002.//www.abiomed.com/fabiocor.html.

    Google Scholar 

  2. Akutsu T (Ed). Artificial Heart 1. The Proceedings of the 1st International Symposium on the Current Problems for Further Development of Artificial Heart and Assist Device. August 2–3, 1985, Tokyo Japan. Springer-Verlag, Tokyo.

    Google Scholar 

  3. Akutsu T (Ed). Artificial Heart 2. The Proceedings of the 2nd International Symposium on Artificial Heart and Assist Device. August 13–14, 1987, Tokyo Japan. Springer-Verlag, Tokyo.

    Google Scholar 

  4. Akutsu T and Hoyanagi H (Eds). Artificial Heart 3 ~ 6. The Proceedings of the 3rd to 6th International Symposium on Artificial Heart and Assist Device. February 16–17, 1990, Tokyo Japan; August 16–17, 1992, Tokyo, Japan; January 16–17, 1995, Tokyo Japan; July 16–17, 1996, Tokyo, Japan. Springer Tokyo.

    Google Scholar 

  5. Akutsu T and Hoyanagi H (Eds). Artificial Heart 7. The Proceedings of the 7th International Symposium on Artificial Heart and Assist Device. March 10–11, 2000, Tokyo, Japan. ISIS Medical Media.

    Google Scholar 

  6. Akutsu T, and Kolff WJ. Permanent substitutes for valves and hearts. ASAIO Trans 4:230–235, 1958.

    Google Scholar 

  7. Akutsu T. Artificial heart: total replacement and partial support. Igaku Shoin, Tokyo, Japan 1975.

    Google Scholar 

  8. American Heart Association. 2002 Heart and Stroke Statistical Update (2002).

    Google Scholar 

  9. Arrow International - Arrow LionHeart™ Left Ventricular Assist System (LVAS) (2002). http://www. arrowintl.com/products/lion_heart/.

    Google Scholar 

  10. Berlin Heart AG - Press Release. Unique implantable Berlin Heart INCOR axial pump for cardiac support works successfully - patient recovered. 12–18–2002. http://www.berlinheart.com/news/pr_20021218.html.

    Google Scholar 

  11. Beyersdorf F. Economics of ventricular assist devices: European view. Ann Thorac Surg 2001, 71:S192–194.

    Google Scholar 

  12. Butler KC, Dow JJ, Litwak P, Kormos RL, and Borovetz HS. Development of the Nimbus/University of Pittsburgh Innovative Ventricular Assist System. Ann Thorac Surg 1999, 68:790–794.

    Article  Google Scholar 

  13. Chen C, Paden B, Antaki J, Ludlow J, Paden D, Crowson R, Bearnson G. A magnetic suspension theory and its application to the HeartQuest ventricular assist device. Artif-Organs 2002, 26: 947–951

    Article  Google Scholar 

  14. Christiansen S, Van Aken H, Breithardt G, Scheld HH, and Hammel D. Successful cardiac transplantation after 4 cases of DeBakey left ventricular assist device failure. J Heart Lung Transplant 2002, 21:706–709.

    Article  Google Scholar 

  15. Cooley DA, Liotta D, Hallman GL, Bloodwell RD, Leachman RD, Milam JD. Orthotopic cardiac prosthesis for two staged cardiac replacement. Am J Cardiol 1969, 24:723–730.

    Article  Google Scholar 

  16. Cooley DA. Mechanical circulatory support systems: past, present, and future. Ann Thorac Surg 1999, 68:641–642.

    Article  Google Scholar 

  17. DeBakey ME. The odyssey of the artificial heart. Artificial Organs 2000, 24:405–411.

    Article  Google Scholar 

  18. DeVries WC, Anderson JL, and Joyce LD. Clinical use of the total artificial heart. N England Journal of Medicine 1984, 310:273–278.

    Article  Google Scholar 

  19. DeVries WC. The permanent artificial heart: four case reports. JAMA 1988, 259:860–864.

    Article  Google Scholar 

  20. Frazier OH, Myers TJ, Gregoric ID, Khan T, Delgado R, Croitoru M, Miller K, Jarvik R, Westaby S. Initial Clinical Experience With the Jarvik 2000 Implantable Axial-Flow Left Ventricular Assist System 2002, 105:2855–2860.

    Google Scholar 

  21. Gibbon JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Medicine 1954, 37:171–180.

    Google Scholar 

  22. Goldstein DJ, and Oz M. (Eds) Cardiac Assist Devices. Futura Publishing Company, Inc., 1999.

    Google Scholar 

  23. Griffith BP, Kormos RL, Borovetz HS, et at, HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg 2001,71:Suppl 3:S116–20;discussion S114–6.

    Article  Google Scholar 

  24. Guy TS. Evolution and current status of the total artificial heart: the search continues. ASAIO Journal 1998, 44:28–33.

    Article  Google Scholar 

  25. Hampton CR, and Verrier ED. Systemic consequences of ventricular assist devices: alterations of coagulation, immune function, inflammation, and the neuroendocrine system. Artif Organs 2002, 26:902–908.

    Article  Google Scholar 

  26. Hendry PJ, Mussivand TV, Masters RG, Bourke ME, Guiraudon GM, Holmes KS, Day KD, Keon WJ. The HeartSaver left ventricular assist device: an update. Ann Thorac Surg 2001, 71(3 Suppl): S166–70.

    Article  Google Scholar 

  27. Hogness JR, VanAntwerp M (eds). The artificial heart: prototype, policies, and patients. Institute of Medicine, Washington DC, National Academy Press, 1991.

    Google Scholar 

  28. Hunt SA, and Frazier OH. Mechanical Circulatory Support and Cardiac Transplantation. Circulation 1998, 97: 2079–2090.

    Article  Google Scholar 

  29. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, et al, ACC/AHA guideline for the evaluation and management of chronic heart failure in the adult: executive summary. J Heart Lung Transplant 2002, 21: 189–203.

    Article  Google Scholar 

  30. Jessup M. Mechanical cardiac-support devices - dream and devilish details. The New England Journal of Medicine 2001, 345: 1490–1493.

    Article  Google Scholar 

  31. Jett GK. ABIOMED BVS 5000: experience and potential advantages. Ann Thorac Surg 1996, 61: 301–304.

    Article  Google Scholar 

  32. Johnson KE, Liska MB, Joyce LD, and Emery RW. Registry Report - use of total artificial hearts: summary of world experience, 1969–1991. ASAIO Journal 1992, 38:M486–292.

    Article  Google Scholar 

  33. Kantrowitz A, Freed PS, Zhou Y, Mandell G, DeDecker P, Riddle J, Wilson D, Mullaney TP A mechanical auxiliary ventricle. Histologic responses to long-term, intermittent pumping in calves. ASAIO J 1995, 4: M340–5

    Article  Google Scholar 

  34. Kantrowitz A, Tjonneland S, Krakauer J, Butner AN, Ohilips SJ, Yahr WZ, Shaprio M, Freed PS, Jaron D, Sherman JL, Jr. Initial clinical experience with cardiac assistance b means of intraaortic phase-shift balloon pumping. ASAIO Trans 1968, 14:344–348.

    Google Scholar 

  35. Keon WJ, Olsen DB. Mechanical circulatory support as a bridge to transplantation: past, present and future. Can J Cardiol 1996, 12: 1017–1030.

    Google Scholar 

  36. Kolff WJ, and Lawson J. Status of the artificial heart and cardiac assist devices in the United States. ASAIO Trans 1975, 21:620–638.

    Google Scholar 

  37. Kumpati GS, McCathy PM, Hoercher KJ. Left ventricular assist device bridge to recovery: a review of the current status. Ann Thorac Surg 2001, 71:S103–108.

    Article  Google Scholar 

  38. Lamy M, Eberhart RC, Fallat RJ, Dietrich HP, Ratliff J, and Hill JD. Effects of extracorporeal membrane oxygenation (ECMO) on pulmonary hemodynamics, gas exchange and prognose. ASAIO Trans 1975, 21: 188–98.

    Google Scholar 

  39. Lavee J, Paz Y. Mechanical alternatives to the human heart: paracorporeal assist system. Israel Medical Association Journal 2002, 4: 125–130.

    Google Scholar 

  40. Lee J, Miller PJ, Chen H, Conley MG, Carpenter JL, Wihera JC, et al., Reliability model from the in vitro durability tests of a left ventricular assist system. ASAIO J. 1999,45:595–601.

    Article  Google Scholar 

  41. Loree HW, Bourque K, Gernes DB, Richardson JS, et al., The HeartMate III: design, and in vivo studies of a maglev centrifugal left ventricular assist device. Artificial Organs 2001, 25:386–391.

    Article  Google Scholar 

  42. Lubeck DP, and Bunker JP. Case study #9: the artificial heart: cost, risks, and benefits. Case Studies of Medical Technologies 1982. Office of Technology Assessment, Congress of the US. Washington DC.

    Google Scholar 

  43. Magovern JA, Sussman MJ, Goldstein AH, Szydlowski GW, Savage EB, and Westaby S. Clinical Results With the AB-180 Left Ventricular Assist Device. Ann Thorac Surg 2001; 71:S121–4.

    Article  Google Scholar 

  44. Magovern JA, Sussman MJ, Goldstein AH, Szydlowski GW, Savage EB, Westaby S. Clinical results with the AB-180 left ventricular assist device. Ann Thorac Surg. 2001, 71(3 Suppl): S121–4;

    Article  Google Scholar 

  45. Maher TR, Bulter KC, Poirier VL, and Gernes DB. HeartMate left ventricular assist devices: a multigeneration of implanted blood pumps. Artificial Organs 2001, 25:422–426.

    Article  Google Scholar 

  46. Mahmood AK, Courtney JM, Westaby S, Adkis M, Reul H. Critical review of current left ventricular assist devices. Perfusion 2000, 15:399–420.

    Article  Google Scholar 

  47. Mavroidis D, Sun BC, Pae WE Jr. Bridge to transplantation: the Penn State experience. Ann Thorac Surg 1999, 68: 684–687.

    Article  Google Scholar 

  48. McCarthy PM. HeartMate implantable left ventricular assist device: bridge to transplantation and future applications. Ann Thorac Surg 1995, 59:S46–51.

    Article  Google Scholar 

  49. Mehlhorn U, Kroner A, and de Vivie ER. 30 years clinical intra-aortic balloon pumping: facts and figures. Thorac Cardiovasc Surg 1999, 47 Suppl 2:298–303.

    Article  Google Scholar 

  50. Mehta SM, Pae WE Jr, Rosenberg G, Snyder AJ, Weiss WJ, Lewis JP, Frank DJ, Thompson JJ, and Pierce WS. The LionHeart LVD-2000: A Completely Implanted Left Ventricular Assist Device for Chronic Circulatory Support. Ann Thorac Surg 2001, 71:S 156–161.

    Article  Google Scholar 

  51. Meyns B. Indications for rotary blood pumps in clinical practice. Artificial Organs 2001, 25:323–326.

    Article  Google Scholar 

  52. Moulopoulos LA, Topaz SR, and Kolff WJ. Extracorporeal assistance to the circulation and intraaortic balloon pumping. ASAIO Trans 1962, 8:86.

    Article  Google Scholar 

  53. Mussivand T, Hendry PJ, Masters RG, King M, Holmes KS, and Keon WJ. Progress with the HeartSaver Ventricular Assist Device. Ann Thorac Surg 1999, 68:785–789.

    Article  Google Scholar 

  54. Myers TJ, Gregoric I, Tamez D, et al., Development of the Jarvik 2000 Heart ventricular assist system. J Heart Fail Circ Support. 2000, 1: 133–140.

    Google Scholar 

  55. Nojiri C, Kijima T, Maekawa J, Horiuchi K, et al., Developent status of Terumo implantable left ventricular assist device system. Artificial Organs 2001, 25:411–413.

    Article  Google Scholar 

  56. Nonaka K, Linneweber J, Ichikawa S, Yoshikawa M, et al., Development of the Baylor Gyro permanently implantable centrifugal blood pump as a biventricular assist device. Artificial Organs 2001, 25:675–682.

    Article  Google Scholar 

  57. Noon GP, Morley DL, Irwin S, Abdelsayed SV, Benkowski RJ, and Lynch BE. Clinical Experience With the MicroMed DeBakey Ventricular Assist Device. Ann Thorac Surg 2001,71:S133–8, discussion S144–6.

    Article  Google Scholar 

  58. Nose Y, Yoshikawa M, Murabayashi S, Takano T. Development of rotary blood pump technology: past, present, and future. Artificial Organs 2000, 24:412–420.

    Article  Google Scholar 

  59. Ochiai Y, Golding LA, Massiello AL, Medvedev AL, Gerhart RL, Chen J-F, Takagaki M, and Fukamachi K. In Vivo Hemodynamic Performance of the Cleveland Clinic CorAide Blood Pump in Calves. Ann Thorac Surg 2001;72:747–52

    Article  Google Scholar 

  60. Olsen DB. Rotary blood pumps: a new horizon. Artificial Organs 1999, 23:695–696.

    Article  Google Scholar 

  61. Olsen DB. The history of continuous-flow blood pumps. Artificial Organs 2000, 24:401–404.

    Article  Google Scholar 

  62. Pasque MK, and Rogers JG. Adverse events in the use of HeartMate vented electric and Novacor left ventricular assist devices: comparing apples and oranges. Journal of Thoracic and Cardiovascular Surgery 2002, 124:1063–1067.

    Article  Google Scholar 

  63. Pennington DG, McBride LR, Swartz MT, et al., Use of the Peirce-Donachy ventricular assist device in patients with cardiogenic shock after cardiac operation. Ann Thorac Surg 1989, 47:130–135.

    Article  Google Scholar 

  64. Portner PM, Jansen PG, Oyer PE, Wheeldon DR, Ramasamy N. Improved outcomes with an implantable left ventricular assist system: a multicenter study. Ann Thorac Surg 2001, 71: 205–209.

    Article  Google Scholar 

  65. Portner PM, Jassawalla JS, Chen H, Conley MG, Maeder PA, Oyer PE. A new dual pusher-plate left ventricular assist blood pump. Artificial Organs 1979, 3(Suppl.) 361–365.

    Google Scholar 

  66. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, DembitskyW, Long JW, Ascheim, DD, Tierney AR, Levitan RG, Watson JT, Ronan NS, Meier P. Long-Term Use of a Left Ventricular Assist Device for End-Stage Heart Failure. New England Journal of Medicine 2001, 345: 1435–1443.

    Article  Google Scholar 

  67. Rose EA, Moskowitz AJ, Packer M, Sollano JA, Williams DL, et al., The REMATCH trial: rational, design, and end points. Ann Thorac Surg 1999, 67:723–730.

    Article  Google Scholar 

  68. Rothenburger M, Wilhelm MJ, Hammel D, Schmidt C, Tjan TDT, Bocker D, Scheld HH, Schmid C. Treatment of thrombus formation associated with the micromed debakey vad using recombinant tissue plasminogen activator. Circulation 2002, 106 (SUPPLEMENT 1): I189–I192.

    Google Scholar 

  69. Saito S, Westaby S, Piggott D, Katsumata T, Dudnikov S, Robson D, Catarino P, Nojiri C. Reliable long-term non-pulsatile circulatory support without anticoagulation. Eur-J-Cardiothorac-Surg. 2001,19: 678–83.

    Article  Google Scholar 

  70. Samuels LE, Holmes EC, Thomas MP, Entwistle JC III, Morris RJ, Narula J, and Wechsler AS. Management of Acute Cardiac Failure with Mechanical Assist: Experience With the ABIOMED BVS 5000. Ann Thorac Surg 2001, 71:S67–72.

    Article  Google Scholar 

  71. Sezai Y. Progress and future perspectives in mechanical circulatory support. Artificial Organs 2001, 25:18–322.

    Article  Google Scholar 

  72. SoRelle R. Cardiovascular news: totally contained AbioCor artificial heart implanted July 3, 2001. Circulation 2001, 104:E9005–9006.

    Google Scholar 

  73. Stevenson LW, Kormos RL. Consensus Conference Report: Mechanical Cardiac Support 2000: Current Applications and Future Trial Design. Journal of Heart and Lung Transplantation 2001, 20:1–38.

    Article  Google Scholar 

  74. Strauss MJ. The political history of the artificial heart. New England Journal of Medicine 1984, 310: 332–336.

    Article  Google Scholar 

  75. Sweeney MS. The hemopump in 1997: a clinical, political, and marketing evolution. Ann Thorac Surg 1999, 68:761–763.

    Article  Google Scholar 

  76. Takatani S. Can rotary blood pumps replace pulsatile devices. Artificial Organs 2001, 25:671–674.

    Article  Google Scholar 

  77. Thoratec Corporation. HeartMate® LVAS Clinical Results, 1 March 2002

    Google Scholar 

  78. Thoratec Corporation. Thoratec® VAD Clinical Results, March 2002.

    Google Scholar 

  79. United Network for Organ Sharing. 2001 Annual Report of the US Organ Procurement and Transplantation Network and Scientific Registry for Transplant Recipients: Transplantation Data 1991–2000.

    Google Scholar 

  80. Wampler RK, Moise JC, Frazier OH, Olsen DB. In-vivo evaluation of a peripheral vascular access axial flow blood pump. ASAIO Trans 1988, 34:450–454.

    Google Scholar 

  81. Watterson PA, Woodard JC, Ramsden V, and Reizes JA. VentrAssist hydrodynamically suspended, open, centrifugal blood pump. Artificial Organs 2000, 24:475–477.

    Article  Google Scholar 

  82. Wheeldon DR, LaForge DH, Lee J, Jansen PG, Jassawalla JS, Portner PM. Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. ASAIO-J. 2002, 48: 546–51.

    Article  Google Scholar 

  83. William VL. Expert panel review of the NHLBI total artificial heart (TAH) program June 1998 - November 1999.

    Google Scholar 

  84. Wolner E, Wieselthaler, Schima H, Thoma H, Losert UM. Cardiac Assist devices: from emergency procedures to regained quality of life. International Journal of Artificial Organs 2002, 25:608–609.

    Google Scholar 

  85. Yamazaki K, Kihara S, Akimoto T, Tagusari O, Litwak, P, Litwak, K, Watach M, Kameneva M, Shinozaki J, Kitano T, Tajima K, Kormos RL, Griffith BP, Tomioka J, Endo M, Koyanagi H. “Evaheart” System: an implantable centrifugal blood pump, recent progress. ASAIO Journal 2001, 47:109.

    Article  Google Scholar 

  86. Yamazaki K, Litwak P, Tagusari O, Mori T, Kono K, Kameneva M, Watach M, Gordon L, Miyagishima M, Tomioka J, Umezo M, Outa E, Antaki JF, Kormos RL, Koyanagi H, Griffith BP. An Implantable Centrifugal Blood Pump with a Recirculating Purge System(Cool-Seal System). Artificial Organs 1998, 22:466–474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Wu, Z.J., Antaki, J.F., Litwak, K., Kameneva, M.V., Borovetz, H.S., Kormos, R.L. (2003). Ventricular Assist Devices: Current Status and Future Perspective. In: Hwang, N.H.C., Woo, S.LY. (eds) Frontiers in Biomedical Engineering. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8967-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8967-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4739-2

  • Online ISBN: 978-1-4419-8967-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics