Skip to main content

Feature-Scale to Wafer-Scale Modeling and Simulation of Physical Vapor Deposition

  • Conference paper
Dispersive Transport Equations and Multiscale Models

Abstract

We present results of modeling and simulation of sputter-deposited thin films used for barrier and seed layers for the metalization stage of integrated circuits. We employ a continuum model in conjunction with the level set method for simulating the motion of the interface. An important physical input in our code is the angular distribution of the arriving material flux. For this we can incorporate empirical data for target erosion as well as the effects of gas scattering during transport in the low pressure sputter chamber. The chamber dimensions are of the same order of magnitude as the mean free path of sputtered atoms and the vapor transport is simulated in a pre-processing Monte Carlo module. First, we compare results for different angular distributions with experimental data for titanium. Second, we report on variations in step coverage across the wafer. Third, we report on validation with experiment for long-throw deposition of tantalum. Finally, we report preliminary work on simulating columnar growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. D. Adalsteinsson AND J.A. Sethian, A level set approach to a unified model for etching, deposition and lithography I: Algorithms and two-dimensional simulations, Journal of Computational Physics, 120 (1995), pp. 128–124.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Adalsteinsson AND J.A. Sethian, A level set approach to a unified model for etching, deposition and lithography II: Three-dimensional simulations, Journal of Computational Physics, 122 (1995), pp. 348–366.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Adalsteinsson AND J.A. Sethian, A level set approach to a unified model for etching, deposition and lithography HI: Redeposition, reemission, surface diffusion and complex simulations, Journal of Computational Physics, 138 (1997), pp. 193–223.

    Article  MathSciNet  MATH  Google Scholar 

  4. F.H. Baumann, R. Liu, C.B. Case, AND W.Y.-C. Lai, 3D modeling of contact material deposition and its impact on equipment design parameters, International Electron Devices Meeting Technical Digest, (1993), pp. 861–864.

    Google Scholar 

  5. I.A. Blech AND H.A. Vander Plas, Step coverage simulation and measurement in a dc planar magnetron sputtering system, Journal of Applied Physics, 54 (1983), pp. 3489–3496.

    Article  Google Scholar 

  6. J.N. Broughton, M.J. Brett, S.K. Dew, AND G. Este, Titanium sputter deposition at low pressures and long throw distances, IEEE Transactions on Semiconductor Manufacturing, 9 (1996), pp. 122–127.

    Article  Google Scholar 

  7. T.S. Cale AND G.B. Raupp, Free molecular transport and deposition in cylindrical features, Journal of Vacuum Science and Technology B, 8 (1990), pp. 649–655.

    Article  Google Scholar 

  8. T.S. Cale, G.B. Raupp, AND T.H. Gandy, Free molecular transport and deposition in long rectangular trenches, Journal of Applied Physics, 68 (1990), pp. 3645–3652.

    Article  Google Scholar 

  9. T.S. Cale, B.R. Rogers, T.P. Merchant, AND L.J. Borucki, Deposition and etch processes: continuum film evolution in microelectronics, Computational Materials Science, 12 (1998), pp. 333–353.

    Article  Google Scholar 

  10. D.G. Coronell, D.E. Hansen, A.F. Voter, C.-L. Liu, X.-Y. Liu, AND J.D. Kress, Molecular dynamics-based ion-surface interaction models for ionized physical vapor deposition feature scale simulations, Applied Physics Letters, 73 (1998), pp. 3860–3862.

    Article  Google Scholar 

  11. C. Eisenmenger-Sittner, R. Beyerknecht, A. Bergauer, W. Bauer, AND G. Betz, Angular distribution of sputtered neutrals in a post magnetron geometry: Measurement and Monte Carlo simulation, Journal of Vacuum Science and Technology A, 13 (1995), pp. 2435–2443.

    Article  Google Scholar 

  12. J. Glimm, J.W. Grove, X.L. Li, K.-M. Shyue, Y. Zeng, AND Q. Zhang, Three-dimensional front tracking, SIAM Journal on Scientific Computing, 19 (1998), pp. 703–727.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Glimm, S.R. Simanca, D. Tan, F.M. Tangerman, AND G. Vanderwoude, Front tracking simulations of ion deposition and resputtering, SIAM Journal on Scientific Computing, 20 (1999), pp. 1905–1920.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Hamaguchi, M. Dalvie, R.T. Farouki, AND S. Sethuraman, A shock-tracking algorithm for surface evolution under reactive-ion etching, Journal of Applied Physics, 74 (1993), pp. 5172–5184.

    Article  Google Scholar 

  15. H. Huang, G.H. Gilmer, AND T. Diaz de la Rubia, An atomistic simulator for thin film deposition in three dimensions, Journal of Applied Physics, 84 (1998), p. 3636.

    Article  Google Scholar 

  16. A. Malaurie AND A. Bessaudou, Numerical simulation of the characteristics of the different metallic species falling on the growing film in d. c. magnetron sputtering, Thin Solid Films, 286 (1996), pp. 305–316.

    Article  Google Scholar 

  17. A.A. Mayo, S. Hamaguchi, J.H. Joo, AND S.M. Rossnagel, Across-wafer nonuniformity of long throw sputter deposition, Journal of Vacuum Science and Technology B, 15 (1997), pp. 1788–1793.

    Article  Google Scholar 

  18. T. Ohta AND H. Yamada, A sputter equipment simulation system for VLSI device, Vacuum, 51 (1998), pp. 479–484.

    Article  Google Scholar 

  19. W.G. Oldham, A.R. Neureuther, C. Sung, J.L. Reynolds, AND S.N. Nandgaonkar, A general simulator for VLSI lithography and etching processes: Part II-application to deposition and etching, IEEE Transactions on Electron Devices, 27 (1980), pp. 145–1459.

    Google Scholar 

  20. S. Osher AND J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), pp. 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  21. P.L. O’Sullivan, F.H. Baumann, AND G.H. Gilmer, Simulations of physical vapor deposition into trenches and vias: validation and comparison with experiment, Journal of Applied Physics, 88 (2000), pp. 4061–4068.

    Article  Google Scholar 

  22. B.R. Rogers, C.J. Tracy, AND T.S. Cale, Compositional variation in sputtered Ti-W films due to re-emission, Journal of Vacuum Science and Technology B, 12 (1994), pp. 2980–2984.

    Article  Google Scholar 

  23. R.C. Ross AND J.L. Vossen, Plasma-deposited thin-film step coverage calculated by computer simulation, Applied Physics Letters, 45 (1984), pp. 239–240.

    Article  Google Scholar 

  24. S. Rossnagel, Directional and ionized physical vapor deposition for microelectronics applications, Journal of Vacuum Science and Technology B, 16 (1998), pp. 2585–2608.

    Article  Google Scholar 

  25. S.M. Rossnagel, C. Nichols, S. Hamaguchi, D. Ruzic, AND R. Turkot, Thin, high atomic weight refractory film deposition for diffusion barrier, adhesion layer, and seed layer applications, Journal of Vacuum Science and Technology B, 14 (1996), pp. 1819–1827.

    Article  Google Scholar 

  26. J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, New York, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

O’Sullivan, P.L. et al. (2004). Feature-Scale to Wafer-Scale Modeling and Simulation of Physical Vapor Deposition. In: Abdallah, N.B., et al. Dispersive Transport Equations and Multiscale Models. The IMA Volumes in Mathematics and its Applications, vol 136. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8935-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8935-2_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6473-6

  • Online ISBN: 978-1-4419-8935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics