Skip to main content

Angiogenesis and Invasion in Gliomas

  • Chapter
Angiogenesis in Brain Tumors

Part of the book series: Cancer Treatment and Research ((CTAR,volume 117))

Abstract

Angiogenesis and tumor cell invasion are pathophysiological processes playing a pivotal role in glioma development and growth since the earliest phase. Angiogenesis and tumor invasion both can be considered as an invasive process in which cells are activated, and move away from their initial location, by modyfing the adhesiveness with the extracellular matrix, expressing new adhesion molecules, and degrading the extracellular matrix components by the active secretion of proteases. This process requires a complex cross-talking between endothelial and tumor cells, extracellular matrix components, and cellular elements of the host microenviroment. Both processes are under the tight regulation of a balance between stimulating and inhibiting factors. The existence of common mechanisms of regulation and the presence of naturally occurring factors that inihibit angiogenesis and invasion, makes the inhibition of both processes possible. Tumor cells may develop adapting mechanims that can allow the tumor to partially escape to the treatment, particularly when only one mechanism or one process is inhibited. The ideal treatment should simultaneously affect both angiogenesis and invasion, by the isolation or development of novel therapeutics capable of influencing both processes. As their efficacy seems also be dependent on the mode of delivery, additional studies are also needed to improve these modalities, in order to ultimately improve the extent and the duration of the therapeutic response. The most widely used in vitro and in vivo models to study angiogenesis and invasion are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Skobe, M., Rockwell, R., Goldstein, N., Vosseler, S., and Fusening, N.E. Halting angiogenesis supresses carcinoma cell invasion. Nat. Med., 3: 1222-1227, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Hahahan, D., and Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell., 86: 353-364, 1996.

    Article  Google Scholar 

  3. Liotta, L.A., Steeg, P. S., and Stetler-Stevenson, W.G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64: 327-336, 1997.

    Article  Google Scholar 

  4. Carmeliet, P., and Jain, R.K. Angiogenesis in cancer and other diseases. Nature (Lond.), 407: 249-257, 2000.

    Article  CAS  Google Scholar 

  5. Brooks, P.C. Role of integrins in angiogenesis: Eur. J. Cancer, 14: 2423-2429, 1996

    Article  Google Scholar 

  6. Thorsen, F., and Tynes, B.B.. Brain tumor cell invasion, anatomical and biological considerations. Anticancer Res., 17: 4121-4126, 1997.

    PubMed  CAS  Google Scholar 

  7. Nicholas, M.K., Prados, M.D., and Larson, D.A. Malignant astrocytomas. In P.M. Black and J Loeffler (eds.), Cancer of the Nervous Systems, pp. 464-491, New York, Blackwell, 1997.

    Google Scholar 

  8. Bjerkvig, R., Lund-Johansen, M., and Edvarsen, K. Tumor cell invasion and angiogenesis in the central nervous system. Curr.Opin. Oncol., 9: 223-229, 1997.

    CAS  Google Scholar 

  9. Giese, A., and Westphal, M. Glioma invasion in the central nervous system. Neurosurgery, 39: 235-252, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Schiffer, D., Cavalla, P., Dutto, A. Cell Proliferation and invasion in malignant gliomas. Anticancer Res, 17: 61-70, 1997.

    PubMed  CAS  Google Scholar 

  11. Vajkoczy, P., Schilling, L., Ullrich, A., Schmiedek, P., and Menger, M.D. Characterization of angiogenesis and microcirculation of high grade glioma: an intravital multifluorescence microscopic approach in athymic nude mouse. J Cerebr. Blood Flow and Metab., 18: 510-520, 1998.

    Article  CAS  Google Scholar 

  12. Leon, S.P., Folkerth, R., and Black, P.M. Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer (Phila), 77: 362-372, 1996.

    Article  CAS  Google Scholar 

  13. Giese, A., Bjerkvig, R., and Westphal, M. Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol., 21: 1624-1636, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Bello, L., Francolini, M., Marthyn, P., Zhang, J.P., Carroll, R.S., Nikas, D.C., Strasser, J.F., Villani, R., Cheresh, D., Black, P.M. AlphavBeta3 and alphavBeta5 integrin expression in glioma periphery. Neurosurgery, 49: 380-390, 2001.

    PubMed  CAS  Google Scholar 

  15. Nieder, C., Grosu, A.L., and Mollis, M.A.. A comparison of treatment for recurrent malignant gliomas. Cancer Rev Treat, 26: 397-409, 2000.

    Article  CAS  Google Scholar 

  16. Brandes, A.A., Ermani, M., Basso, U., Amista, P., Berti, F., Scienza, R., Rotilio, A., Pinna, G., Gardimann, M., and Monfardini, S. Temozolamide as a second line systemic regimen in recurrent high grade glioma: a phase II study. Ann.Oncol., 12: 255-257,2001.

    Article  PubMed  CAS  Google Scholar 

  17. Sonveaux, P, Brouet, A., Havaux, X., Gregoire, V., Dessy, C., Balligand, JL, and Feron O.. Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res, 63, 1012-1019, 2003.

    PubMed  CAS  Google Scholar 

  18. Burger, P.C., Dubois, P.J., Schold, SC. Computerized tomographic and pathological studies of untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg., 58: 159-169, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Gaspar, L.E., Fisher, B.J., MacDonald, D.R., et al. Supratentorial malignant glioma. Pattern of recurrence and implications for external beam local treatment. Int. J Radiat. Oncol., 24: 55-57, 1992.

    Article  CAS  Google Scholar 

  20. Vaikoczy, P, Farhadi, M, Gaumann, A, Heidenreich, R, Erber, R, Wunder, A, Tonn, JC, Menger, MD, Breier, G. Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor 2, and angiopoietin 2. J Clin Investig., 109: 777-785, 2002.

    Google Scholar 

  21. Friedlander, D.R., Zagzag, D., Schiff, B., Cohen, H., Allen, J.C., Kelly, P., and Grumet, M. Migration of brain tumor cells on extracellular matrix proteins in vitro correlates with tumor types and grade and involves alphav and Betal integrins. Cancer Res, 56: 1939-1947, 1997.

    Google Scholar 

  22. Zagzag, D., Amirnovin, R., Greco, M.A., et al. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest. 80: 837-849, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Friedl, P., Wolf, A. Tumor cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer, 3, 362-374, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Binder, D.K., Berger, MS. Proteases and the biology of glioma invasion: J Neurooncol, 56: 149-158, 2002.

    Article  PubMed  Google Scholar 

  25. Uhm, JH, Dooley, NP, Villemure, JG, and Young, W. Mechanisms of glioma invasion. Role of matrix-metalloproteinases. Can J Neurol Sci, 24: 3-15, 1997.

    PubMed  CAS  Google Scholar 

  26. Uhm, JH, Dooley, NP, Villemure, JG, and Young, W. Glioma invasion in vitro: regulation by metalloproteinase 2 and protein kinase C. Clin Exp Metastasis, 14: 421-433,1997.

    Article  Google Scholar 

  27. Giese, A., Hagel C, Kim, L. et al. Tromboxane synthase regulates the migratory phenotype of human glioma cells. Neuro-oncol, 1: 3-13, 1999.

    PubMed  CAS  Google Scholar 

  28. Derugyna, E., Bourdon, M., Luo, G., Reifield, R., and Strongin, A. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci., 110: 2473-2582, 1997.

    Google Scholar 

  29. Forsyth, P.A., Laing, T.D., Gibson, A.W., Rewcastle, N.B., Brashes, P.M., Sutherland, G., Johnston, R.N., and Edwards, DR. High levels of gelatinase-B and gelatinase-A in metastatic glioblastoma. J Neuroonc., 36: 21-29, 1998.

    Article  CAS  Google Scholar 

  30. Forsyth, P.A., Wong, H., Rewcastle, N.B., Morris, D.G., Muzik, H, Johnston, R.N., Brasher, P.M., Sutherland, G., and Edwards, DR. Gelatinase A (MMP-2), gelatinase B (MMP-9), and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas: Br J Cancer, 79: 1828-1835, 1999.

    Article  PubMed  CAS  Google Scholar 

  31. Overall, C.M., King, A.E., Bigg, H.F., McQuibban, A., Atherstone, J., Sam, D.K., Ong, A.D., Lau, T.T., Wallon, U.M., DeClerk, Y.A, and Tam, E. Identification of the tissue inhibitor of metalloproteinase2 (TIMP2) binding site on the hemopexin like domain of human gelatinase A. J Biol.Chem. 274: 4421-4429, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Bigg, H.F., Shi, YE, Liu, YE, Steffensen, B, and Overall, CM. Specific high affinity binding of tissue inhibitor of metalloprotainase 4 (TIMP4) to the COOH terminal hemopexin like domain of human gelatinase A. J Biol Chem., 272: 15496-11550, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. McComb, RD, Moul, JM, Bigner, DD. Distribution of type VI collagen in human gliomas: comparison with fibronectin and glioma-mesenchymal matrix glycoprotein. J Neuropath Exp Neurol, 46: 623-633, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Paulus, W, Roggendorf, W, Schuppan D: Immunohistochemical investigation of collagen subtypes in human glioblastomas. Virchows A Pathol Anat Histopathol. 413: 325-332, 1988.

    Article  CAS  Google Scholar 

  35. Rutka, JT, Myatt CA, Giblin, JR, et al. Distribution of extracellular matrix proteins in primary human brain tumors: an immunohistochemical analysis. Can J Neurol Sci 14: 25-30, 1997.

    Google Scholar 

  36. Giese, A., Loo, MA, Rief, MD, et al: Substrates for atrocytoma invasion. Neurosurgery, 37:294-302, 1995.

    Article  PubMed  CAS  Google Scholar 

  37. Giese, A., Kluwe, L., Laube, B., et al. Migration of human glioma cells on myelin. Neurosurgery, 38: 755-764, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Giese, A., Loo, MA, Norman, SA, et al. Contrasting migratory response of astrocytomas cells to tenascin mediated by different intgerins. J Cell sci, 109: 2161-2168, 1996.

    PubMed  CAS  Google Scholar 

  39. Kaczmarek, E., Zapf, S, Bouterfa, H. et al. Dissecting glioma invasion: interrelation of adhesion, migration and intercellular contacts determine the invasive phenotype. Int J Dev Neurosci 17: 625-641, 1999.

    Article  Google Scholar 

  40. Rempel, SA, Golembieski, WA, Fisher, JL, Maile, M, Nakeff, A. Brain extracellular matrix proteins. J Neurooncol, 53: 149-160, 2001.

    Article  PubMed  CAS  Google Scholar 

  41. Chekenya, M, Enger, PO, Thorsen, F, Tynes, BB, Al-Sarraj, S, Read, TA, Furmanek, T, Mahesparan, L, Levine, JM, Butt, Am, Pilkington, GJ, Bjerkvig, R. The glial precursor proteoglycan, NG2, is expressed on tumor neovasculature by vascular pericytes in human malignant brain tumors. Neuropath Appl Neurobiol, 28: 367-380, 2002.

    Article  CAS  Google Scholar 

  42. Chekenya, M, Hjelstuen, M, Enger PO, Thorsen, F, Jacob, AL, Probst, B, Haraldseth, O, Pilkington, G, Butt, A, Levine, JM, Bjerkvig, R. NG2 promotes angiogenesis dependent tumor growth in CNS by sequestering angiostatin. FASEB J, 16: 586-588, 2002.

    PubMed  CAS  Google Scholar 

  43. Chekenya, M, Rooprai, HK, Davies, D, Levine, JM, Butt, AM, Pilkington, G. The NG2 chondroitinsulfate proteoglycan: role in malignant progression of human brain tumors. Int J Dev Neurosci, 17: 421-435, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. Javerzat S, Auguste P, Bikfalvi A. The role of FGFs in vascular development. Trends Mol Med. 8: 483-489, 2002.

    Article  PubMed  CAS  Google Scholar 

  45. Gladson CL. The extracellular matrix of gliomas: modulation of cell function. J Neuropath Exp Neurol., 58: 1029-40, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Okamoto, I, Tsuiki, H, Kenyon, LC, Godwin, Ak, Emlet DR, Holgado-Madruga M, Lanham, IS, Joynes CJ, Vo, KT, Guha, A, Matsumoto, M, Ushio, Y, Saya, H, Wong, AJ. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors. Am J Path, 160: 441-447, 2001.

    Article  Google Scholar 

  47. Ranuncolo, SM, LaledaV, Specterman, S, Varela, M, Lastiri, J, Morandi, A, Matos, E, Bal de Kier Joffe, E, Puricelli, L, Pallotta, MG. CD44 expression in gliomas. J Surg Oncol, 79: 30-35, 2002.

    Article  PubMed  CAS  Google Scholar 

  48. Hynes, RO. Integrins: versatility, modulation, and signalling in cell adhesion. Cell, 69: 11-25, 1992.

    Article  PubMed  CAS  Google Scholar 

  49. Paulus, W, Baur, I, Beutler, AS, Reeves, SA. Diffuse brain invasion of glioma cells requires beta 1 integrins. Lab Invest., 75: 819-826, 1996.

    PubMed  CAS  Google Scholar 

  50. Paulus, W, Tonn, JC. Interactions of glioma cells and extracellular matrix. J Neurooncol., 24: 87-91, 1995.

    Article  PubMed  CAS  Google Scholar 

  51. Paulus, W, Tomm, JC. Basement membrane invasion of glioma cells mediated by integrin receptors. J Neurosurg., 80: 515-519, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Paulus, W, Baur, I, schuppan, D, Roggendorf, W. Characterization of integrins receptors in normal and neoplastic human brain. Am J Path., 143: 154-163, 1993.

    PubMed  CAS  Google Scholar 

  53. Gladson, CL, Wilcox, JN, Sanders, L, Gillespie, GY, Cheresh, DA. Cerebral microenviroment influences expression of the vitronectin gene in astrocytic tumors. J Cell Sci, 108: 947-956, 1995.

    PubMed  CAS  Google Scholar 

  54. Brooks, PC, Silletti, S., von Schalcha, TL, Aimes, RT, Stetler-Stevenson, WG, Quigley, JP, and Cheresh, DA. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alphavBeta3. Cell, 85: 683-693, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Brooks, PC, Silletti, S, von Schalcha, TL, Friedlander, M, Cheresch, DA. Disruption of angiogenesis by PEX, a non catalytic metalloproteinase fragment with integrin binding activity. Cell, 92: 391-400, 1998.

    Article  PubMed  CAS  Google Scholar 

  56. Derugyna, EI, Ratnikov, B, Monosov, E, Postnova, TI, Discipio, R, Smith, JW, Strongin, AY. MT1-MMP initiates activation of proMMP2 and integrin alphavBeta3 promotes maturation of MMP2 in breast carcinoma cells. Exp Cell Res., 263: 209-223, 2001.

    Article  Google Scholar 

  57. Zhu, Y, and Parada, LF. The molecular and genetic basis of neurologic tumors. Nat Rev Cancer, 2: 616-626, 2002.

    Article  PubMed  CAS  Google Scholar 

  58. Komberg, L, Earp, HS, Parsons, JT, et al. Cell adhesion or integrins clustersing increases phosphorylation of a focal adhesion associated tyrosine kinase. J Biol Chem, 267: 23439-23442, 1992.

    Google Scholar 

  59. Luna, EJ, Hitt, Al. Cytoscheletron-plasma membrane interactions. Science, 258: 955-964,1992.

    Article  PubMed  CAS  Google Scholar 

  60. Miyamoto, S, Teramoto, H, Gutkind, JS, Yamada, KM. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinase and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol, 135: 1633-1642, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Van der Flier, A, Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res, 305: 285-298, 2001.

    Article  PubMed  Google Scholar 

  62. Schawrtz, Ma. Integrin signalling revisited. Trends Cell biol, 11: 466-470, 2001.

    Article  Google Scholar 

  63. Martin, KH, Slack, JK, Boerner, Sa, et al. Integrin connections map. To infinity and beyond. Science, 296: 1652-1653, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. Cao, Y. Endogenous angiogenesis inhibitors and their therapeutical implications. Int J Biochem Cell Biol, 33: 357-369, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Bikfalvi, A, Bicknell, R. Recent advances in angiogenesis, anti angiogenesis, and vascular targeting. Trends Pharmacol Sci., 23: 576-582, 2002.

    Article  PubMed  CAS  Google Scholar 

  66. Hagedorn, M, Bikfalvi, A. Target molecules for anti angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol., 34: 89-110, 2000.

    Article  PubMed  CAS  Google Scholar 

  67. Bello L, Lucini, V,. Carrabba, G, Giussani, C, Machluf, M, Pluderi M, Nikas, D, Zhang, J, Tomei, G, Carroll, RS, Bikfalvi, A, Black PM. Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occuring fragment of human metalloproteinase-2. Cancer Res, 61: 8730-8736, 2001.

    PubMed  CAS  Google Scholar 

  68. Bello L, Carrabba G, Giussani C, Lucini V, Cerutti F, Scaglione F, Landre J, Pluderi M, Tomei G, Villani R, Carroll RS, Black PM, Bikfalvi A. Low-dose chemotherapy combined with an anti angiogenic druig reduces human glioma growth in vivo. Cancer Res, 61: 7501-7506, 2001.

    PubMed  CAS  Google Scholar 

  69. Bello L, Giussani C, Carrabba G, Pluderi M, Lucini V, Pannacci M, Caronzolo D, Tomei G, Villani, Scaglione F, Carroll RS, Bikfalvi A. Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors.

    Google Scholar 

  70. Hagedorn M, Zilberberg, L, Lozano RM, Cuevas P, Canron X, Redondo-Horcajo M, Gimenez-Gallego G, Bikfalvi, A. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2. FASEB J, 15: 550-2, 2001.

    PubMed  CAS  Google Scholar 

  71. Jouan, V, Canron, X, alemany, M, Caen, JP, Quentin, G, Pluoet, J, Bikfalvi, A. Inhibition of in vitro angiogenesis by platelet factor 4 derived peptides and mechanism of action. Blood, 94: 984-993, 1999.

    PubMed  CAS  Google Scholar 

  72. Giussani C, Carrabba G, Pluderi M, Lucini V, Pannacci M, Caronzolo D, Costa F, Minotti M, Tomei G, Villani R, Bikfalvi A, Bello L. Local intracerebral delivery of endogenous inhibitors by osmotic minipumps effectively suppresses glioma growth in vivo. Cancer Res, 63, 2003.

    Google Scholar 

  73. Hagedorn, M, Zilberberg, L, Wilting J, Canron X, Carrabba, G, Giussani C, Pluderi M, Bello L, Bikfalvi A. Domain swapping in a COOH terminal fragment of platelet factor 4 generates potent angiogenesis inhibitors. Cancer Res, 62: 6884-6890, 2002.

    PubMed  CAS  Google Scholar 

  74. Kunkel, P, Ulbricht, U, Bohlen, P, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor 2. Cancer Res, 61: 6624-6628, 2001.

    PubMed  CAS  Google Scholar 

  75. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber B. Heterogeneous vascular dependence of tumor cell populations. Am J Path, 158: 1325-1334, 2001.

    Article  PubMed  CAS  Google Scholar 

  76. Yu, JL, Coomber BL, Kerbel RS. A paradigm for therapy induced microenviromental changes in solid tumors leading to drug resistance. Differentiation, 70: 599-609, 2002.

    Article  PubMed  Google Scholar 

  77. Pennacchetti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3: 347-361, 2003.

    Article  Google Scholar 

  78. Vernon RB, Lane TF, Angelo SC, Sage H. Adhesion, shape, proliferation and gene expression of mouse Leydig cells are influenced by extracellular matrix in vivo. Biol Reprod., 44: 157-170, 1991.

    Article  PubMed  CAS  Google Scholar 

  79. Jung S, Kim HW, Lee, JH, Kang SS, Rhu HH, Jeong YL, Yang SY, Chung HY, Bae CS, Choi C, Shin BA, Kim KK, Ahn, KY. Brain tumor invasion system using or-ganotypic brain-slice culture as an alternative to in vivo model. J Cancer Res Clin Oncol, 128: 469-476, 2002.

    Article  PubMed  Google Scholar 

  80. De Board, S, Christov, C, Giullamo, JS, Kassar Duchossov L, Plafi S, Leguerinel C, Masset M, Cohen-Hagenauer, O, Peschanski, M, Lefrancois, T. Invasion of human glioma biopsy specimens in cultures of rodents brain slices: a quantitative analysis. J Neurosurg, 97: 169-176, 2002.

    Article  Google Scholar 

  81. Ohnishi, T, Matsumura, H, Isumoto, S, Hiraga, S, Hayakawa, T. A novel model of glioma invasion using organotopyc brtain slice culture. Cancer Res, 58: 2935-2940, 1998.

    PubMed  CAS  Google Scholar 

  82. Mohamam S, Chandrasekar N, Yanamandra N, Khawar S, Mirza F, Dinh, DH, Olivero WC, Rao SJ. Modulation of invasive properties of human glioblastoma cells stably expressing aminoterminal fragment of urokinase type plasminogen activator. Oncogene, 21: 7824-7830, 2002.

    Article  Google Scholar 

  83. Maestro RD, Shivers R, McDonald W, Maestro AD. Dynamics of C6 astrocytoma invasion into three dimensional collagen gels. J Neurooncol, 53: 87-98, 2001.

    Article  PubMed  CAS  Google Scholar 

  84. Nirmala, C, Rao JS, Ruifrok, AC, Langford, LA, Obeyesekere, M. Growth characteristics of glioblastoma spheroids. Int J Oncol, 19: 1109-115, 2001.

    PubMed  CAS  Google Scholar 

  85. Knott JC, Mahesparan, R, Garcia-Cabrera I, Bolge Tysnes B, Edvarsen K, Ness GO, Mork S, Lund-Johansen M, Bjerkvig, R. Stimulation of extracellular matrix components in the normal brain by invading glioma cells. Int.1 Cancer, 75: 864-872, 1998.

    Article  CAS  Google Scholar 

  86. Deroanne, CF, Hajitou, Calberg, CM, Nusgens, BV, Lapiere, CM. Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine upregulation of vascular endothelial grwoth factor expression. Cancer Res, 47: 5590-5597, 1997.

    Google Scholar 

  87. Joki, T, Heese, O, Nikas D, Bello L, Zhang J, Kraeft SK, Seyfried NT, Abe T, Chen LB, Carroll RS, Black PM.- Expression of cyclooxygenase 2 (COX2) in human gliorna and in vitro inhibition by a specific COX-2 inhibitor, NS398. Cancer Res, 60: 4926-4931, 2000.

    PubMed  CAS  Google Scholar 

  88. Pepper MS, Montesano R, Vassalli JD, Orci L. Condrocytes ihibits endothelial sprout formation in vitro: evdience for involvement of a transforming sprout factor beta. J Cell Physiol, 146:170-179, 1991.

    Article  PubMed  CAS  Google Scholar 

  89. Chopra, R, and Mikkelsen, T. Experimental animals models for the study of brain tumors. In: Mikkelsen, R, Bjerkvig, OD, Laerum, and ML Rosenblum (eds), Brain Tumor Invasion: biological, clinical, and therapeutic considerations. Pp 231-250, 1998.

    Google Scholar 

  90. Holland EC. Brain tumor animal models: importance and progress. Curr Opin On-col, 13: 143-147, 2001.

    CAS  Google Scholar 

  91. Orhan S, Erber R, Ullrich A, Vaikoczy P. Intravital microscopy reveals broad vascular heterogeneity for human malignant glioma. Abstr EANO meeting, Florence, Sept 2003.

    Google Scholar 

  92. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet, 25: 55-57, 2000.

    Article  PubMed  CAS  Google Scholar 

  93. Reilly KM, Loisel Da, Bronson RT, McLaughlin ME, Jacks T. NfllTrp53 mutant mice develop glioblastoma with evidence of strain specific effects. Nat Genet, 26: 109-113, 2000.

    Article  PubMed  CAS  Google Scholar 

  94. Reilly KM, Jacks T. Genetically engineered mouse models of astrocytomas: GEMs in the rough?. Sem Cancer Biol, 11: 177-91, 2001.

    Article  CAS  Google Scholar 

  95. Weiss, WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshten N, Roberts T, Wendland MF, DePinho, R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res, 63: 1589-1595,2003.

    PubMed  CAS  Google Scholar 

  96. Ding H, Shannon P, Lau N, Wu X, Roncan L, Baldwin RL, Takebayashi H, Nagy A, Gutmann DH, Guha A. Oligodendrogliomas result from the expression of an activated mutant epidermal growth fcator receptor in a RAS transgenic mouse astrocytoma model. Cancer Res, 63: 1106-1113, 2003.

    PubMed  CAS  Google Scholar 

  97. Read TA, Farhadi H, Bjerkvig R, Olsen BR, Rokstad AH, Husrthy PC, Vajkoczy P. Intravital microscopy reveals novel anti vascular and anti tumor effects of endostatin delivered locally by arginate encapsulated cells. Cancer Res. 61: 6830-6837, 2001.

    PubMed  CAS  Google Scholar 

  98. Vajkoczy P, Ulrich A, Henger HD. Intravital fluorescence video microscopy to study tumor angiogenesis and microcirculation. Neoplasia. 2: 56-61, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bello, L., Giussani, C., Carrabba, G., Pluderi, M., Costa, F., Bikfalvi, A. (2004). Angiogenesis and Invasion in Gliomas. In: Kirsch, M., Black, P.M. (eds) Angiogenesis in Brain Tumors. Cancer Treatment and Research, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8871-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8871-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4699-9

  • Online ISBN: 978-1-4419-8871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics