Skip to main content

Future Trends in Acoustic RF MEMS Devices

  • Chapter
  • First Online:
MEMS-based Circuits and Systems for Wireless Communication

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Piezoelectricity and longitudinal elastic wave propagation constitute the basic physical mechanisms involved in the classical bulk acoustic wave resonator. Innovative acoustic MEMS will rely on other types of elastic waves (shear waves, guided waves in free plates or plates bonded on substrate, waves in periodic media) or transduction mechanisms (electrostriction) which are described in the first section of this chapter. Operation and characteristics of emerging acoustic RF MEMS devices, such as shear and guided wave resonators, tunable resonators and phononic crystal-based resonators and filters, are reviewed in the other sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Surface acoustic wave (SAW) devices are not discussed in this chapter except in Sect. 4.3. SAW devices are generally not considered as MEMS for historical (first SAW devices were developed when MEMS technology did not exist) and technological (classical SAW devices require a piezoelectric substrate) reasons. This separation is less and less justified today, as current research in SAW, BAW and other acoustic RF MEMS devices converges.

  2. 2.

    In this chapter, the term “elastic waves” is preferred to “acoustic waves” which is also associated to waves propagating in fluids. However, devices are still denoted as “acoustic RF MEMS devices” throughout the text as they are often designated by these terms in electrical engineering.

  3. 3.

    The location of the resonance modes at β = 0 is given here for AlN. Their connection to S1 and S2 modes could be different in other materials.

  4. 4.

    This case corresponds to a homogeneous medium treated as a periodic medium of period d. The dispersion curve is obtained by superposing homogeneous medium dispersion curves and their replication shifted by any integer (positive or negative) multiple of 2π ∕ d.

  5. 5.

    Quality factors given in this chapter are in-air measured values at series frequency f s unless specified otherwise.

References

  1. B.A. Auld, Acoustic Fields and Waves in Solids (Krieger Publishing Company, Malabar, Florida, 1990)

    Google Scholar 

  2. D. Royer, E. Dieulesaint, Elastic Waves in Solids (Springer, Berlin, 2000)

    Google Scholar 

  3. L. Brillouin, Wave Propagation in Periodic Structures (McGraw-Hill, New York, 1946)

    MATH  Google Scholar 

  4. V. Zhang, B. Dubus, B. Collet, M. Destrade, J. Acoust. Soc. Am. 123, 1972 (2008)

    Article  Google Scholar 

  5. G.G. Fattinger, S. Marksteiner, J. Kaitila, R. Aigner, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 1175–1178

    Google Scholar 

  6. R. Ruby, J. Larson, C. Feng, S. Fazzio, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 217–220

    Google Scholar 

  7. D. Ekeom, B. Dubus, A. Volatier, in Proceedings IEEE Ultrasonics Symposium, 2006, pp. 1474–1477

    Google Scholar 

  8. J. Kaitila, in Proceedings IEEE Ultrasonics Symposium, 2007, pp. 120–129

    Google Scholar 

  9. R. Ruby, in Proceedings IEEE Ultrasonics Symposium, 2007, pp. 1029–1040

    Google Scholar 

  10. I. Koné, B. Dubus, L. Buchaillot, A. Reinhardt, F. Casset, M. Aïd, J.F. Carpentier, P. Ancey, in Proceedings IEEE Frequency Control Symposium, 2008, pp. 581–585

    Google Scholar 

  11. J.O. Vasseur, B. Djafari-Rouani, L. Dobrzynski, P.A. Deymier, J. Phys. Condens. Matter 9:7327 (1997)

    Google Scholar 

  12. D. Garcia-Pablos, M. Sigalas, F.R.M. d. Espinoza, M. Torres, M. Kafesaki, N. Garcia, Phys. Rev. Lett. 84:4349 (2000)

    Google Scholar 

  13. S.X. Yang, J.H. Page, Z.Y. Liu, M.L. Cowan, C.T. Chan, P. Sheng, Phys. Rev. Lett. 93, 024301 (2004)

    Article  Google Scholar 

  14. J.O. Vasseur, A.C. Hladky-Hennion, B. Djafari-Rouhani, F. Duval, B. Dubus, Y. Pennec, J. Appl. Phys. 101, 111904 (2007)

    Article  Google Scholar 

  15. D.A. Berlincourt, D.R. Curran, H. Jaffe, in Physical Acoustics, Principles and Methods, vol. 1A, ed. by W.P. Mason (Academic, New York, 1964)

    Google Scholar 

  16. O.B. Wilson, Introduction to the Theory and Design of Sonar Transducer (Peninsula Publishing, Los Altos, 1988)

    Google Scholar 

  17. W.P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (D. Van Nostrand Company, Princeton, 1950)

    Google Scholar 

  18. P. Muralt, J. Antifakos, M. Cantoni, R. Lanz, F. Martin, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 315–320

    Google Scholar 

  19. A. Volatier, E. Defaÿ, M. Aïd, A. N’hari, P. Ancey, B. Dubus, Appl. Phys. Lett. 92, 032906 (2008)

    Article  Google Scholar 

  20. F. Martin, M.E. Jan, S. Rey-Mermet, B. Belgacem, D. Su, M. Cantoni, P. Muralt, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 1339 (2006)

    Article  Google Scholar 

  21. M. Link, M. Schreiter, J. Weber, R. Primig, D. Pitzer, G. Reinhardt, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 492 (2006)

    Article  Google Scholar 

  22. J. Bjurström, G. Wingqvist, I. Katardjiev, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 53, 2095 (2006)

    Article  Google Scholar 

  23. T. Yanagitani, M. Kiuchi, M. Matsukawa, Y. Watanabe, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 54, 1680 (2007)

    Article  Google Scholar 

  24. E. Milyutin, P. Muralt, in Proceedings IEEE Frequency Control Symposium, 2008

    Google Scholar 

  25. A. Volatier, G. Carruyer, D.P. Tanon, P. Ancey, E. Defaÿ, B. Dubus, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 902–905

    Google Scholar 

  26. P.J. Stephanou, A.P. Pisano, in Proceedings IEEE Ultrasonics Symposium, 2006, pp. 2401–2404

    Google Scholar 

  27. V. Yantchev, I. Katardjiev, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 1580–1583

    Google Scholar 

  28. G. Piazza, P.J. Stephanou, A.P. Pisano, J. Microelectromech. Syst. 15, 1406 (2006)

    Article  Google Scholar 

  29. G.K. Ho, R. Abdolvand, A. Sivapurapu, S. Humad, F. Ayazi, J. Microelectromech. Syst. 17, 512 (2008)

    Article  Google Scholar 

  30. M. Desvergne, E. Defaÿ, D. Wolozan, M. Aïd, P. Vincent, A. Volatier, Y. Deval, J.B. Bégueret, in Proceedings European Solid State Device Research Conference (ESSDERC), 2007, pp. 358–361

    Google Scholar 

  31. R. Abdolvand, F. Ayazi, in Proceedings IEEE/MTT-S International Microwave Symposium, 2007, pp. 509–512

    Google Scholar 

  32. H.M. Lavasani, R. Abdolvand, F. Ayazi, in Proceedings IEEE Custom Integrat. Circ. Conf., 2007, pp. 599–602

    Google Scholar 

  33. M. Schreiter, R. Gabl, D. Pitzer, R. Primig, W. Wersing, J. Euro. Ceram. Soc. 24, 1589 (2004)

    Article  Google Scholar 

  34. C. Zinck, E. Defaÿ, A. Volatier, G. Caruyer, D.P. Tanon, L. Figuire, in Proceedings IEEE Ultrason. Ferroelectr. Freq. Control. joint 50th Anniv. Conf., 2004, pp. 29–32

    Google Scholar 

  35. J. Conde, P. Muralt, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 1373 (2008)

    Article  Google Scholar 

  36. J. Berge, A. Vorobiev, W. Steichen, S. Gevorgian, IEEE Microwave Wireless Comm. 17, 655 (2007)

    Article  Google Scholar 

  37. J.M. Lourtioz, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, New York, 2005)

    MATH  Google Scholar 

  38. A.C. Hladky-Hennion, J. Vasseur, B. Dubus, F. Duval, C. Granger, Y. Pennec, B. Djafari-Rouhani, B. Morvan, in Proceedings IEEE Ultrasonics Symposium, 2007, pp. 620–623

    Google Scholar 

  39. T.T. Wu, L.C. Wu, Z.G. Huang, J. Appl. Phys. 97, 094916 (2005)

    Article  Google Scholar 

  40. S. Benchabane, A. Khelif, J.Y. Rauch, L. Robert, V. Laude, Phys. Rev. E 73, 065601(R) (2006)

    Google Scholar 

  41. B.M. Assouar, B. Vincent, H. Moubchir, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 273 (2008)

    Article  Google Scholar 

  42. J.O. Vasseur, P.A. Deymier, M. Beaugeois, Y. Pennec, B. Djafari-Rouani, D. Prevost, Zeitschrift fur Kristallographie, pp. 829–835 (2005)

    Google Scholar 

  43. S.G. Alekseev, Y.V. Gulyaev, G.D. Mansfeld, V.I. Pustovoit, V.F. Dmitriev, in Proceedings IEEE Ultrasonics Symposium, 2005, pp. 2124–2127

    Google Scholar 

  44. Y. Pennec, B. Djafari-Rouhani, J.O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, V. Laude, Appl. Phys. Lett. 87:261912 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Dubus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dubus, B. (2013). Future Trends in Acoustic RF MEMS Devices. In: Enz, C., Kaiser, A. (eds) MEMS-based Circuits and Systems for Wireless Communication. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8798-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8798-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8797-6

  • Online ISBN: 978-1-4419-8798-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics