Skip to main content

Abstract

NAD:arginine mono-ADP-ribosyltransferases catalyze the transfer of ADP-ribose from NAD to the guanidino group of arginine on a target protein. Deduced amino acid sequences of one family (ART1) of mammalian ADP-ribosyltransferases, cloned from muscle and lymphocytes, show hydrophobic amino and carboxyl termini consistent with glycosylphosphatidylinositol (GPI)-anchored proteins. The proteins, overexpressed in mammalian cells transfected with the transferase cDNAs, are released from the cell surface with phosphatidylinositol-specific phospholipase C (PI-PLC), and display immunological and biochemical characteristics consistent with a cell surface, GPI-anchored protein. In contrast, the deduced amino acid sequence of a second family (ART5) of transferases, cloned from murine lymphoma cells and expressed in high abundance in testis, displays a hydrophobic amino terminus, consistent with a signal sequence, but lacks a hydrophobic signal sequence at its carboxyl terminus, suggesting that the protein is destined for export. Consistent with the surface localization of the GPI-linked transferases, multiple surface substrates have been identified in myotubes and activated lymphocytes, and, notably, include integrin α subunits. Similar to the bacterial toxin ADP-ribosyltransferases, the mammalian transferases contain the characteristic domains involved in NAD binding and ADP-ribose transfer, including a highly acidic region near the carboxy terminus, which, when disrupted by in vitro mutagenesis, results in a loss of enzymatic activity. The carboxyl half of the protein, synthesized as a fusion protein in E. coli, possessed NADase, but not ADP-ribosyltransferase activity. These findings are consistent with the existence at the carboxyl terminus of ART1 of a catalytically active domain, capable of hydrolyzing NAD, but not of transferring ADP-ribose to a guanidino acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okazaki IJ, Moss J: Structure and function of eukaryotic mono-ADP-ribosyltransferases. In: M.P. Blaustein, H. Grunicke, D. Pette, G. Schultz, M. Schweiger, (eds). Reviews of Physiology, Biochemistry and Pharmacology, Springer-Verlag, New York, NY, 1996, pp. 51–104

    Google Scholar 

  2. Zolkiewska A, Nightingale MS, Moss J: Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89: 11352–11356, 1992

    Article  PubMed  CAS  Google Scholar 

  3. Okazaki IJ, Zolkiewska A, Nightingale MS, Moss J: Immunological and structural conservation of mammalian skeletal muscle glycosyl-phosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry 33: 12828–12836, 1994

    Article  PubMed  CAS  Google Scholar 

  4. Zolkiewska A, Moss J: Integrin α7 as substrate for a glycosyl-phosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268: 25273–25276, 1993

    PubMed  CAS  Google Scholar 

  5. Zolkiewska A, Moss J: Processing of ADP-ribosylated integrin α7 in skeletal muscle myotubes. J Biol Chem 270: 9227–9233, 1995

    Article  PubMed  CAS  Google Scholar 

  6. von der Mark H, Durr J, Sonnenberg A, von der Mark K, Deutzmann R, Goodman SL: Skeletal myoblasts utilize a novel βl-series integrin and not α6βl for binding to the E8 and T8 fragments of laminin. J Biol Chem 266: 23593–23601, 1991

    PubMed  Google Scholar 

  7. Moss J, Stanley SJ, Nightingale MS, Murtagh JJ Jr., Monaco L, Mishima K, Chen H-C, Williamson KC, Tsai SC: Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267: 10481–10488, 1992

    PubMed  CAS  Google Scholar 

  8. Zolkiewska A, Thompson WC, Moss J: Interaction of integrin α7βl in C2C12 myotubes and in solution with laminin. Exp Cell Res 240: 86–94, 1998

    Article  PubMed  CAS  Google Scholar 

  9. Ginsberg MH, Du Y, Plow EF: Inside-out integrin signalling. Curr Opin Cell Biol 4: 766–771, 1992

    Article  PubMed  CAS  Google Scholar 

  10. Soman G, Haregewoin A, Rom RC, Finberg R: Guanidine group specific ADP-ribosyltransferase in murine cells. Biochem Biophys Res Commun 176: 301–308, 1991

    Article  PubMed  CAS  Google Scholar 

  11. Wang J, Nemoto E, Kots AY, Kaslow HR, Dennert G: Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI anchored/arginine ADP-ribosyl-transferase. J Immunol 153: 4048–1058, 1994

    PubMed  CAS  Google Scholar 

  12. Okazaki IJ, Kim H-J, Lesma E, McElvaney G, Moss J: Molecular characterization of a glycosylphosphatidylinositol-linked ADP-ribosyltransferase from lymphocytes. Blood 88: 915–921, 1996

    PubMed  CAS  Google Scholar 

  13. Wang J, Nemoto E, Dennert G: Regulation of CTL by ecto-nicotinamide adenine dinucleotide (NAD) involves ADP-ribosylation of a p56lck-associated protein. J Immunol 156: 2819–2827, 1996

    PubMed  CAS  Google Scholar 

  14. Nemoto E, Yu Y, Dennert G: Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1 ) function in T-cells. J Immunol 157: 3341–3349, 1996

    PubMed  CAS  Google Scholar 

  15. Okazaki IJ, Kim H-J, Moss J: A novel membrane-bound lymphocyte ADP-ribosyltransferase cloned from Yac-1 cells. J Biol Chem 271: 22052–22057, 1996

    Article  PubMed  CAS  Google Scholar 

  16. Domenighini M, Rappuoli R: Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Mol Microbiol 21: 667–674, 1996

    Article  PubMed  CAS  Google Scholar 

  17. Kim H-J, Okazaki IJ, Takada T, Moss J: An 18-kDa domain of a glycosylphosphatidylinositol-linked NAD:arginine ADP-ribosyltransferase possesses NAD glycohydrolase activity. J Biol Chem 272: 8918–8923, 1997

    Article  PubMed  CAS  Google Scholar 

  18. Takada T, Iida K, Moss J: Conservation of a common motif in enzymes catalyzing ADP-ribose transfer. J Biol Chem 270: 541–544, 1995

    Article  PubMed  CAS  Google Scholar 

  19. Koch-Nolte F, Petersen D, Balasubramanian S, Haag F, Kahlke D, Wilier T, Kastelein R, Bazan F, Thiele H-G: Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)-transferases and share structure motifs with ADP-ribosylation toxins. J Biol Chem 271: 7686–7693, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moss, J. et al. (1999). Characterization of NAD:arginine ADP-ribosyltransferases. In: Alvarez-Gonzalez, R. (eds) ADP-Ribosylation Reactions: From Bacterial Pathogenesis to Cancer. Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8740-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8740-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4678-4

  • Online ISBN: 978-1-4419-8740-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics