Skip to main content

Finite Differences and Finite Elements

  • Chapter
  • First Online:
Computational Ocean Acoustics

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 5610 Accesses

Abstract

In the preceding chapters, we have described the numerical solution techniques most commonly applied in ocean-acoustic propagation modeling. One or more of these approaches are numerically efficient for the majority of forward problems occurring in underwater acoustics, including propagation over very long ranges, with or without lateral variations in the environment. However, the numerical efficiency of these approaches is obtained by sacrificing generality through the various assumptions and approximations applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that the summation convention for repeated indices does not apply to (7.202), (7.203), (7.205), and (7.206).

References

  1. W.A. Kuperman, H. Schmidt, Self-consistent perturbation approach to rough surface scattering in stratified elastic media. J. Acoust. Soc. Am. 86, 1511–1522 (1989)

    ADS  Google Scholar 

  2. R.B. Evans, A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom. J. Acoust. Soc. Am. 74, 188–195 (1983)

    ADS  MATH  Google Scholar 

  3. M.D. Collins, R.B. Evans, A two way parabolic equation for acoustic backscattering in the ocean. J. Acoust. Soc. Am. 91, 1357–1368 (1992)

    ADS  Google Scholar 

  4. G.E. Forsythe, W.R. Wasow, Finite Difference Methods for Partial Differential Equations (John Wiley, New York, 1960)

    MATH  Google Scholar 

  5. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, London, 1969)

    Google Scholar 

  6. G. Dahlquist, Å. Björk, Numerical Methods (Prentice Hall, Englewood Cliffs, NJ, 1974)

    Google Scholar 

  7. R.A. Stephen, A review of finite difference methods for seismo-acoustics problems at the seafloor. Rev. Geophys. 26, 445–458 (1988)

    ADS  Google Scholar 

  8. J.R. Fricke, Acoustic scattering from elemental ice features: Numerical modeling results. J. Acoust. Soc. Am. 93, 1784–1796 (1993)

    ADS  Google Scholar 

  9. N.M. Newmark, A method for computation of structural dynamics. Proc. Am. Soc. Civ. Eng. 85, EM3, 67–94 (1959)

    Google Scholar 

  10. Z. Alterman, F.C. Karal Jr., Propagation of elastic waves in layered media by finite difference methods. Bull. Seism. Soc. Am. 58, 367–398 (1968)

    Google Scholar 

  11. K.R. Kelly, R.W. Ward, S. Treitel, R.M. Alford, Synthetic seismograms: A finite-difference approach. Geophysics 41, 2–27 (1976)

    Google Scholar 

  12. J.R. Fricke, Acoustic scattering from elastic ice: A finite difference solution. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, MA, 1991

    Google Scholar 

  13. D. Gottlieb, M. Gunzberger, E. Turkel, On numerical boundary treatment of hyperbolic systems for finite difference and finite element methods. SIAM J. Num. Anal. 19, 671–682 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  14. R. Kosloff, D. Kosloff, Absorbing boundaries for wave propagation problems. J. Comput. Phys. 63, 363–376 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  15. D. Huang, Finite element solution to the parabolic wave equation. J. Acoust. Soc. Am. 84, 1405–1413 (1988)

    ADS  Google Scholar 

  16. A.H. Olson, J.A. Orcutt, G.A. Fisher, The discrete wavenumber ∕ finite element method for synthetic seismograms. Geophys. J. R. Astron. Soc. 77, 421–460 (1984)

    ADS  MATH  Google Scholar 

  17. J.E. Murphy, S.A. Chin-Bing, A seismo-acoustic finite element model for underwater acoustic propagation. in Shear Waves in Marine Sediments, ed. by J.M. Hovem, M.D. Richardson, R.D. Stoll (Kluwer Academic Publishers, The Netherlands, 1991), pp. 463–470

    Google Scholar 

  18. W. Seong, Hybrid Galerkin boundary element – wavenumber integration method for acoustic propagation in laterally inhomogeneous media. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, MA, 1991

    Google Scholar 

  19. O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, London, 1977)

    MATH  Google Scholar 

  20. C.A.J. Fletcher, Computational Galerkin Methods (Springer, New York, 1984)

    MATH  Google Scholar 

  21. D.S. Burnett, Finite Element Analysis: From Concepts to Applications (Addison-Wesley, Reading, MA, 1987)

    MATH  Google Scholar 

  22. B.G. Galerkin, Series solution of some problems of elastic equilibrium of rods and plates. (in Russian), Vestn. Inzh. Tech. 19, 897–908 (1915)

    Google Scholar 

  23. D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Am. 96, 2798–2816 (1994)

    ADS  MathSciNet  Google Scholar 

  24. J.J. Shirron, Solution of exterior Helmholtz problems using finite and infinite elements. Ph.D. thesis. University of Maryland, Collage Park, MD, 1995

    Google Scholar 

  25. J.J. Shirron, I. Babuska, A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems. Comput. Methods Appl. Mech. Eng. 164, 121–139 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  26. J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  27. J.P. Bérenger, Perfectly matched layer for the FDTD solution of wave–structure interaction problems. IEEE Trans. Antennas Propag. 44, 110–117 (1996)

    ADS  Google Scholar 

  28. F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19, 2061–2090 (1998)

    MathSciNet  MATH  Google Scholar 

  29. E. Turkel, A. Yefet, Absorbing PML boundary layers for wave-like equations. Appl. Numer. Math. 27, 533–557 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Q.H. Liu, Perfectly matched layers for elastic waves in cylindrical and spherical coordinates. J. Acoust. Soc. Am. 105, 2075–2084 (1999)

    ADS  Google Scholar 

  31. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering (Springer, New York, 1998)

    MATH  Google Scholar 

  32. M. Zampolli, A. Tesei, F.B. Jensen, N. Malm, J.B. Blottman, A computationally efficient finite element model with perfectly matched layers applied to scattering from axisymmetric objects. J. Acoust. Soc. Am. 122, 1472–1485 (2007)

    ADS  Google Scholar 

  33. J.P. Bérenger, Evanescent waves in PML’s: Origin of the numerical reflection in wave–structure interaction problems. IEEE Trans. Antennas Propag. 47, 1497–1503 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  34. J.P. Bérenger, Application of the CFS PML to the absorption of evanescent waves in waveguides. IEEE Microw. Wirel. Compon. Lett. 12, 218–220 (2002)

    Google Scholar 

  35. J.J. Shirron, T.E. Giddings, A finite element model for acoustic scattering from objects near a fluid–fluid interface. Comput. Methods Appl. Mech. Eng. 196, 279–288 (2006)

    ADS  MATH  Google Scholar 

  36. Q.H. Liu, J. Tao, The perfectly matched layer for acoustic waves in absorptive media. J. Acoust. Soc. Am. 102, 2072–2082 (1997)

    ADS  Google Scholar 

  37. Y.Q. Zeng, Q.H. Liu, A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. J. Acoust. Soc. Am. 109, 2571–2580 (2001)

    ADS  Google Scholar 

  38. O.B. Matar, V. Preobrazhensky, P. Pernod, Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media. J. Acoust. Soc. Am. 118, 2880–2890 (2005)

    ADS  Google Scholar 

  39. A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Acoustical Society of America, Melville, NY, 1991)

    Google Scholar 

  40. M.C. Junger, D. Feit, Sound, Structures, and Their Interaction (MIT, Cambridge, MA, 1972)

    MATH  Google Scholar 

  41. G.T. Schuster, L.C. Smith, Modeling scatterers embedded in a plane-layered media by a hybrid Haskell–Thomson and boundary integral equation method. J. Acoust. Soc. Am. 78, 1387–1394 (1985)

    ADS  Google Scholar 

  42. H. Kawase, Time-domain response of a semi-circular canyon for incident SV, P, and Rayleigh waves calculated by the discrete wavenumber boundary element method. Bull. Seism. Soc. Am. 78, 1415–1437 (1988)

    Google Scholar 

  43. T.W. Dawson, J.A. Fawcett, A boundary integral equation method for acoustic scattering in a waveguide with nonplanar surfaces. J. Acoust. Soc. Am. 87, 1110–1125 (1990)

    ADS  MathSciNet  Google Scholar 

  44. P. Gerstoft, H. Schmidt, A boundary element approach to seismo-acoustic facet reverberation. J. Acoust. Soc. Am. 89, 1629–1642 (1991)

    ADS  Google Scholar 

  45. H. Schmidt, S. Krenk, Asymmetric vibrations of a circular elastic plate on an elastic half space. Int. J. Solids Struct. 18, 91–105 (1982)

    MATH  Google Scholar 

  46. S. Krenk, H. Schmidt, Elastic wave scattering by a circular crack. Phil. Trans. R. Soc. Lond. A-308, 167–198 (1982)

    Google Scholar 

  47. P. Stepanishen, A generalized internal source density method for the forward and backward projection of harmonic pressure fields from complex bodies. J. Acoust. Soc. Am. 101, 3270–3277 (1997)

    ADS  Google Scholar 

  48. A. Sarkissian, Multiple scattering effects when scattering from a target in a bounded medium. J. Acoust. Soc. Am. 96, 3137–3144 (1994)

    ADS  Google Scholar 

  49. R.T. Kessel, Scattering of elastic waves in layered media: A boundary integral – normal mode method. Ph.D. thesis University of Victoria, Victoria, Canada, 1996

    Google Scholar 

  50. F. Ingenito, Scattering from an object in a stratified medium. J. Acoust. Soc. Am. 82, 2051–2059 (1987)

    ADS  Google Scholar 

  51. H. Schmidt, I. Veljkovic, M. Zampolli, Bistatic scattering from buried targets in shallow water – experiment and modeling. in Proceedings of 7th ECUA Conference, ed. by D.G. Simons (Delft University, The Netherlands, 2004), pp. 475–482

    Google Scholar 

  52. I. Lucifredi, H. Schmidt, Subcritical scattering from buried elastic shells. J. Acoust. Soc. Am. 120, 3566–3583 (2006)

    ADS  Google Scholar 

  53. J.A. Fawcett, A scattering-chamber approach for solving finite rough surface scattering problems. J. Acoust. Soc. Am. 118, 1348–1357 (2005)

    ADS  Google Scholar 

  54. A.T. Abawi, M.B. Porter, Propagation in an elastic wedge using the virtual source technique. J. Acoust. Soc. Am. 121, 1374–1382 (2007)

    ADS  Google Scholar 

  55. H. Schmidt, J. Glattetre, A fast field model for three-dimensional wave propagation in stratified environments based on the global matrix method. J. Acoust. Soc. Am. 78, 2105–2114 (1985)

    ADS  Google Scholar 

  56. H. Schmidt, Virtual source approach to scattering from partially buried elastic targets. in High Frequency Acoustics Conference, ed. by M.B. Porter, M. Siderius, W.A. Kuperman (AIP, Melville, NY, 2004), pp. 456–463

    Google Scholar 

  57. M. Zampolli, A. Tesei, G. Canepa, O.A. Godin, Computing the far-field scattered or radiated by objects inside layered fluid media using approximate Green’s functions. J. Acoust. Soc. Am. 123, 4051–4058 (2008)

    ADS  Google Scholar 

  58. S.G. Kargl, P.L. Marston, Observations and modeling of the backscattering of short tone bursts from a spherical shell: Lamb wave echoes, glory, and axial reverberations. J. Acoust. Soc. Am. 85, 1014–1028 (1989)

    ADS  Google Scholar 

  59. J.D. Kaplunov, L.Y. Kossovich, E.V. Nolde, Dynamics of Thin Walled Elastic Bodies (Academic, San Diego, CA, 1998)

    MATH  Google Scholar 

  60. H. Schmidt, J. Lee, Physics of 3D scattering by rough interfaces and buried targets in shallow water. J. Acoust. Soc. Am. 105, 1605–1617 (1999)

    ADS  Google Scholar 

  61. M. Zampolli, A. Tesei, F.B. Jensen, Benchmark problems for acoustic scattering from elastic objects in the free field and near the sea floor. J. Acoust. Soc. Am. 125, 89–98 (2009)

    ADS  Google Scholar 

  62. J.D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, Amsterdam, The Netherlands, 1993)

    MATH  Google Scholar 

  63. D.S. Burnett, M. Zampolli, FESTA: A 3-D finite element program for acoustic scattering from undersea targets. Rep. SR-394 NATO Undersea Research Center, La Spezia, Italy, 2004

    Google Scholar 

  64. A.D. Pierce, Variational formulation in acoustic radiation and scattering. in Physical Acoustics, vol. XXII, ed. by A.D. Pierce, R.N. Thurston (Academic, San Diego, CA, 1993)

    Google Scholar 

  65. G.C. Everstine, A symmetric potential formulation for fluid–structure interaction. J. Sound Vib. 79, 157–160 (1981)

    ADS  Google Scholar 

  66. G.C. Everstine, Finite element formulations of structural acoustics problems. Comput. Struct. 65, 307–321 (1997)

    MATH  Google Scholar 

  67. N.D. Veksler, Resonance Acoustic Spectroscopy (Springer, Berlin, 1993)

    Google Scholar 

  68. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn B. Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H. (2011). Finite Differences and Finite Elements. In: Computational Ocean Acoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8678-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8678-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8677-1

  • Online ISBN: 978-1-4419-8678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics