Skip to main content

Abstract

An increasing collection of chemical compounds is now prepared by MultiComponent Reactions (MCRs), since a synthesis by a MCR can be accomplished just by mixing their educts and their yields are usually much higher than by the multistep syntheses that correspond to sequences of many steps. The latter require much preparative work and their yield decreases with each step. With the exception of Passerini’s work, in the first century of the MCRs and chemistry of the isocyanides were not combined. These two parts of chemistry were combined in 1959 when the four component reaction of the isocyanides (U-4CR) was introduced.1 In the usual chemistry, their MCRs are less used than its normal reactions, whereas in the chemistry of the isocyanides more MCRs and their libraries are carried out than those of one or two components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Ugi, J. Prakt. Chem. 339, 499 (1997).

    Article  CAS  Google Scholar 

  2. J. Chattopadhyaya, A. Dömling, K. Lorenz, I. Ugi, and Werner, Nucleosides & Nucleotides, 16, 843 (1997).

    Article  CAS  Google Scholar 

  3. A. Strecker, Ann. Chem. 75, 27 (1850).

    Article  Google Scholar 

  4. C. Mannich and I. Krötsche, Arch. Pharm. 250, 647 (1912); edited by F. F. Blick, and R. Adams, Organic Reaction, 1. 1, John Wiley & Sons, New York, 303, 1942.

    Article  CAS  Google Scholar 

  5. H. Hellmann and G. Opitz, α-Aminoalkylierung, Verlag Chemie, Weinheim, 1960.

    Google Scholar 

  6. A. Hantzsch, Justus Liebigs AnnChem. 215, 1; 219, 1 (1982); Ber. Dtsch. Chem. Ges. 23, 1474 (1890); see also: C. Böttinger, Justus Liebigs Ann.Chem. 208, 122 (1981); U. Eisener and J. Kuthan, Chem. Rev. 72, 1 (1972)

    Google Scholar 

  7. B. Radziszewski, Ber. Dtsch. Chem. Ges. 15, 1499, 2706 (1882).

    Article  Google Scholar 

  8. P. Biginelli, Ber. Dtsch. Chem. Ges. 24, 1317, 2962 (1891); 26, 447 (1893); C. O. Kappe, Acc. Chem. Res. 33, 879 (2000).

    Article  Google Scholar 

  9. H.Bergs, Ger. Pat., 566094 (1929); Chem. Abstr. 27 1001 (1933); H.T. Bucherer and W. J. Steiner, Prakt. Chem. 140, 291 (1934); H.T. Bucherer, ibid. 141, 5 (1934).

    Google Scholar 

  10. F. Asinger, Angew. Chem., 68, 413 (1956); F. Asinger, M. Thiel, and E. Pallas, Liebigs Ann. Chem, 602, 37 (1957); F. Asinger and M. Thiel, Angew. Chem., 79, 953 (1967); F. Asinger, W. Leuchtenberg, and H. Offermanns, Chem. Zeitung, 94, 6105 (1974); F. Asinger and K. H. Gluzek, Monats. Chem., 114, 47 (1983)

    Article  CAS  Google Scholar 

  11. I. Ugi, Isonitrile Chemistry, Academic Press, New York, 1971.

    Google Scholar 

  12. W. Lieke, Justus Liebigs Ann. Chem. 112, 316 (1859).

    Article  Google Scholar 

  13. A. Gautier, Justus Liebigs Ann. Chem. 142, 289 (1867); Ann. Chim. (Paris) [4] 17, 103, 203 (1869).

    Article  Google Scholar 

  14. A. W. Hofmann, Ber. Dtsch. Chem. Ges. 3, 63 (1870); see also: W. P. Weber G. W. Gokel, and I. Ugi, Angew. Chem. 84, 587 (1972); Angew. Chem., Int. Ed. Engl. 11, 530 (1972).

    Article  Google Scholar 

  15. M. Passerini, Gazz. Chim. Ital., 51 II, 126 (1921); 51 II 181; 56, 826 (1926); M. Passerini and G. Ragni, ibid. 61, 964(1931)..

    Google Scholar 

  16. I. Ugi, S. Lohberger, and R. Karl, Comprehensive Organic Synthesis: Selectivity for Synthetic Efficiency, vol. 2, Chap. 4.6, B. M. Trost, C. H. Heathcock (eds), Pergamon, Oxford 1991, p. 1083; a) p. 1090.

    Google Scholar 

  17. A. Döm ling and I. Ugi, Angew. Chem. 112, 3300 (2000); Angew. Chem., Int. Ed. Engl. 39, 3168 (2000).

    Article  Google Scholar 

  18. W. Rothe, Pharmazie 5, 190 (1950).

    CAS  Google Scholar 

  19. I. Hagedorn and H. Tönjes, Pharmazie 11, 409 (1956); 12, 567 (1957); see also: W. R. Hertler and E. J. Corey J. Org. Chem. 23, 1221 (1958).

    CAS  Google Scholar 

  20. I. Ugi and R. Meyr, Angew. Chem. 70, 702 (1958).

    Article  CAS  Google Scholar 

  21. R. Obrecht, R. Herrmann, and I. Ugi Synthesis, 1985, 400.

    Google Scholar 

  22. G. Skorna and I. Ugi, Angew. Chem. 89, 267 (1977); Angew. Chem., Int. Ed. Engl. 16, 259 (1977).

    Article  CAS  Google Scholar 

  23. H. Eckert and B. Forster, Angew. Chem. 99, 922 (1987); Angew. Chem., Int. Ed. Engl., 26, 1221 (1987).

    Article  CAS  Google Scholar 

  24. I. Ugi, R. Meyr, U. Fetzer, and C. Steinbrückner, Angew. Chem. 71, 386 (1959).

    Google Scholar 

  25. I. Ugi, A. Dömling, and W. Hörl, Endeavour 18, 115 (1994); b) GIT Fachzeitschrift für das Laboratorium 38, 430 (1994).

    Article  CAS  Google Scholar 

  26. I. Ugi, D. Marquarding, and R. Urban, Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins, Vol. 6, B. Weinstein (ed.), Marcel Dekker, New York 1982, p. 245.

    Google Scholar 

  27. B. M. Ebert and I. K. Ugi, Tetrahedron 54, 11887 (1998).

    CAS  Google Scholar 

  28. T. Yamada, Y. Omoto, Y. Yamanaka, T. Miyazava, and S. Kuwata, Synthesis 1998, 991.

    Google Scholar 

  29. S. L. Schreiber, Science 287, 1964 (2000); D. Lee, J. K. Sello, and S. L. Schreiber, Org. Lett. 2, 709 (2000).

    Article  CAS  Google Scholar 

  30. D. Askin, K. K. Eng, K. Rossen, R. M. Purick, K. M. Wells, and R. P. Voante, Tetrahedron Lett. 35, 673 (1994); K. Rossen, R. J. Pye, L. M. DiMichele, R. P. Voante, and P. J. Reider, Tetrahedron Lett. 39, 6823 (1998).

    Article  CAS  Google Scholar 

  31. M. Bodanszky and M.A. Ondetti, edited by G. A. Olah, Peptide Synthesis, J. Wiley & Sons, New York. (1966).

    Google Scholar 

  32. I. Ugi and C. Steinbrückner, Chem. Ber. 94, a) 734; b) 2802 (1961).

    Article  CAS  Google Scholar 

  33. I. Ugi and K. Offermann, Angew. Chem. 75, 917 (1963); Angew. Chem., Int. Ed. Engl., 2, 624 (1963); I. Ugi, K. Offermann, and H. Herlinger, Angew. Chem. 76, 613 (1964); Angew. Chem., Int., Ed. Engl., 3, 656 (1964); I. Ugi, K. Offermann, H. Herlinger, and D. Marquarding, Justus Liebigs Ann. Chem. 709, 1 (1967)

    Article  CAS  Google Scholar 

  34. I. Ugi and G. Kaufhold, Justus Liebigs Ann.Chem. 709, 11 (1967).

    Article  CAS  Google Scholar 

  35. I. Ugi and K. Offermann, Chem. Ber. 97, 2996 (1964).

    Article  CAS  Google Scholar 

  36. I. Ugi, Rec. Chem. Progr. 30, 289 (1969).

    CAS  Google Scholar 

  37. G. Wagner and R. Herrmann, Ferrocenes, A. Togni and T. Hayashi (eds.), VCH Verlag, Weinheim, 1995.

    Google Scholar 

  38. A. Demharter and I. Ugi, J. Prakt. Chem. 335, 244 (1993).

    Article  CAS  Google Scholar 

  39. L. K. Likhosherstov, O. S. Novikova, V. A. Derivitkava, and N. K. Kochetkov, Carbohydr. Res. 146, Cl (1986); L. K. Likhosherstov, O. S. Novikova, V. N. Shbaev, and N. K. Kochetkov, Russ. Chem. Bull., 45, 1760 (1996).

    Article  Google Scholar 

  40. J. Drabik, J. Achats, and I. Ugi, Tetrahedron, in preparation.

    Google Scholar 

  41. H. Kunz and W. Pfrengle, J Am Chem. Soc., 110, 651 (1988); Tetrahedron, 44, 5487 (1988); H. Kunz, W. Pfrengle, and W. Sager, Tetrahedron Lett. 30, 4109 (1989); H. Kunz, W. Pfrengle, K. Rück, and W. Sager, Synthesis 1991, 1039; H. Kunz and K. Rück, Angew. Chem. 105, 355 (1991).

    Article  CAS  Google Scholar 

  42. M. Goebel and I. Ugi, Tetrahedron Letters 36, 6043 (1995); M. Goebel, H.-G. Nothofer, G. Roβ, and I. Ugi, Tetrahedron 53, 3123 (1997).

    Article  CAS  Google Scholar 

  43. S. Lehnhoff, M. Goebel, R. M. Karl, K. Klösel, and I. Ugi, Angew. Chemie 107, 1208 (1995); Angew. Chem., Int. Ed. Engl. 34, 1104 (1995); S. Lehnhoff, Doctoral thesis, Technical University of München, 1994.

    Article  Google Scholar 

  44. A. von Zychlinski, edited by Z. Hippe and I. Ugi, MultiComponent Reactions & Combinatorial Chemistry, p. 31; German-Polish Workshop, Rzeszów, 28.–30. Sept. 1 1998, University of Technology, Rzeszów / Technical University, Munich,; Doctoral thesis, Technical University Munich, 1998.

    Google Scholar 

  45. G. Ross, Doctoral thesis, Technical University Munich, 2001; G. Ross and I. Ugi, Canadian J. Chem. submitted.

    Google Scholar 

  46. G. Ross, I. Ugi, and E. Herdweck, Angew. Chem., submitted.

    Google Scholar 

  47. K. Kehagia, A. Dömling, and I. Ugi, Tetrahaedron 51, 139 (1995); K. Kehagia, and I. Ugi, Tetrahaedron 51, 9523 (1995) A. Dömling and I. Ugi, Angew. Chemie 107, 2465 (1995); Angew. Chem., Int. Ed. Engl. 34, 2238 (1995); A. Dömling, K. Kehagia, and I. Ugi, Tetrahaedron 51, 9519 (1995).

    Article  CAS  Google Scholar 

  48. I. Ugi and E. Wischhöfer, Chem. Ber. 95, 136 (1962).

    Article  CAS  Google Scholar 

  49. A. Schutz, I. Ugi, and J. Kabbe, J. Chem. Res. (S) 1979, 157; (M) 1979, 2064.

    Google Scholar 

  50. A. Schutz and I. Ugi, Z. Naturforschung 34d, 1159 (1979).

    Google Scholar 

  51. G. Neyer and I. Ugi, Synthesis 9, 743 (1991).

    Article  Google Scholar 

  52. H. H. Wassermann and M. B. Floyd, Tetrahaedron Suppl. 7, 441 (1966); H. H. Wassermann, F. E. Mac Carthy, and K. S. Prowse, Chem Rev. 86, 845 (1986).

    Article  Google Scholar 

  53. S. Ganslmeier, Doctoral thesis, Technical University of München, 1998.

    Google Scholar 

  54. C. Burdack, Doctoral thesis, Technical University Munich, 2001; C. Burdack and I. Ugi, Angew. Chem., submitted.

    Google Scholar 

  55. T. Kametani, S. Huang, A. Hakayama, and T. Honda, J. Org. Chem. 47, 2328. (1985); T. Kametani, T. Hagahara, and T. Honda, J. Org. Chem. 50, 2327 (1982); T. Kametani, S.-D. Chu, and T. Honda, J. Chem Soc. Perk. Trans. 1, 1593 (1988).

    Article  Google Scholar 

  56. T. Lindhorst, H. Bock, and I. Ugi, Tetrahedron 55, 7411 (1999).

    Article  CAS  Google Scholar 

  57. R. Bossio, S. Marcaccini, P. Paoli, R. Pepino, and C. Polo, Synthsis 1991, 999; R. Bossio, S. Marcaccini, P.Paoli, P. Papaleo, R. Pepino, and C. Polo, Liebigs Ann.Chem. 1991, 843; R. Bossio, S. Marcaccini, and R. Pepino, Justus Liebigs Ann.Chem. 1991, 1107; R. Bossio, S. Marcaccini, R. Pepino, and Torroba, Synthesis 1993, 783 R. Bossio, S. Marcaccini, and R. Pepino, Liebigs Ann. Chem. 1993, 1229; R. Bossio, S. Marcaccini, S. Papaleo, Pepino, J. Heterocycl. Chem. 31, 397 (1994); R. Bossio, S. Marcaccini, P. Paoli, and R. Pepino, Synthsis 1994, 672; R. Bossio, S. Marcaccini, and R. Pepino, Tetrahedron Letters 36, 2325 (1995); J. Org. Chem. 61, 2202 (1996); R. Bossio, S. Marcaccini, R. Pepino, and T. Torroba, J. Chem. Soc., Perkin Trans 1, 1996, 229; R. Bossio, C. F. Marcos, S. Marcaccini, and R. Pepino, Heterocycles. 45, 1589 (1997); Synthesis 1997, 1389; R. Bossio, S. Marcaccini, and R. Pepino, Tetrahedron Letters 38, 2519 (1997).

    Google Scholar 

  58. I. Ryu, N. Sonoda, and D. P. Curran, Chem. Rev. 96, 177 (1996); A. Studer, P. Jeger, P. Wipf, and D. P. Curran, J. Org. Chem. 62, 2917 (1997); A. Studer, S. Hadida, R. Ferrito, S.-Y. Kim, P. Jeger, and D. P. Curran, Science 275, 823 (1997); H. Josien, S.-B. Ko, D. Bom, and D. P. Curran, Chem. Eur. 4, 1043 (1998).

    Article  CAS  Google Scholar 

  59. A. Dömling and I. Ugi, Angew. Chem., 105, 634 (1993); Angew. Chem,. Int. Ed. Engl., 32, 563 (1993).

    Article  Google Scholar 

  60. S. MacLane and G. Birkhoff, Algebra, MacMillan Company, New York, 1967, p. 3: Given sets of R and S have the intersection R ⋂ S with the common elements R and S. This means R ⋂ S = x |x ⊂ R and x ⊂ S, where as a union R ⋃ S is R ⋃ S = x | x ⊂ R or x ⊂ S

    Google Scholar 

  61. D. Bradley, New Scientist, 16, July 3 (1993); C&EN, 32, April 19 (1993).

    Google Scholar 

  62. R. B. Merrifield, J. Am. Chem Soc., 85, 2149 (1963).

    Article  CAS  Google Scholar 

  63. A. Furka, Drug Dev. Res., 36, 1 (1995).

    Article  CAS  Google Scholar 

  64. F. Balkenhohl, C. v. Buschen-Hünnefeld, A. Lanshy, and C. Zechel, Angew. Chem., 108, 3436 (1996); Angew. Chem. Int. Ed. Engl., 35, 2288 (1996).

    Article  Google Scholar 

  65. N. K Terret, Combinatorial Chemistry, Oxford Univ. Press: New York, 1998.

    Google Scholar 

  66. R. W. Armstrong, Combinatorial libraries related to natural products at the ACS National Meeting in Anaheim, Calif. on April 2, 1995; J. Am. Chem. Soc. 117, 7842 (1995).

    Google Scholar 

  67. L. Weber, S. Waltbaum, C. Broger, and K. Gubernator, Angew. Chem. 107, 2452; (1995); Angew. Chem. Int. Ed. Engl. 34, 2280 (1995); O. Lacke and L. Weber, Chimia 50, 445 (1996); L. Weber, Current Opinion in Chemical Biol. 2, 381 (1998).

    Article  Google Scholar 

  68. G. Vledutz and K. A. Finn, Proc. Dept. of Mechanization and Automization of Information Work, Acad. Sci. USSR, Moscow, 1960, p. 66; G. Vledutz, Inf. Storage Retr. 1, 117 (1963).

    Google Scholar 

  69. R. K. Lindsay, B. G. Buchanan, E. A. Feigencaun, and J. Lederberg, Applications of Artificial Intelligence for Organic Chemistry: The DENDRAL Project, McGraw-Hill, New York, 1980; J. Lederberg, Proc. Natl. Acad. Sci. USA, 53, 134 (1990).

    Google Scholar 

  70. E. J. Corey, Pure Appl. Chem. 14, 19 (1967); E. J. Corey and X.-M. Cheng, The Logic of Chemical Synthesis, Wiley, New York, 1986; E. J. Corey and W. T. Wipke, Science 166, 178 (1991).

    Article  CAS  Google Scholar 

  71. W. T. Wipke and D. Rogers, J. Chem. Inf. Comput. 24, 71 (1984).

    Article  CAS  Google Scholar 

  72. H. Gelernter, N. S. Sridharan, A. J. Hart, S. C. Yen, F. W. Fowler, and H. J. Shue, Top. Curr. Chem. 41, 113 (1973); H. Gelernter and J. R. Rose, J. Chem. Inf. Comput. Sci. 30, 492 (1990).

    CAS  Google Scholar 

  73. I. Ugi, Rec. Chem. Proc. 30, 389 (1969).

    Google Scholar 

  74. I. Ugi, J. Bauer, K. Bley, A. Dengler, A. Dietz, E. Fontain, B. Grusber, R. Herges, M. Knauer, K. Reitsam, and N. Stein, Angew. Chem. 105, 210 (1993); Angew. Chem., Int. Ed. Engl. 32, 201 (1993).

    Article  CAS  Google Scholar 

  75. J. Dugundji and I. Ugi, Top. Curr. Chem. 39, 19 (1973).

    CAS  Google Scholar 

  76. I. Ugi, N. Stein, M. Knauer, B. Gruber, K. Bley, and R. Weidinger, Top. Curr. Chem. 166, 199 (1993).

    Article  CAS  Google Scholar 

  77. J. Friedrich and I. Ugi, J. Chem Res. Synop. 1980, 70; J. Chem Res. Miniprint 1980, 1301.

    Google Scholar 

  78. J. Bauer and I. Ugi, J. Chem Res. Synop. 1982, 298; J. Chem. Res. Miniprint 1982, 3101; J. Bauer, R. Herges, E. Fontain, and I. Ugi, Chimia 39, 43 (1985); J. Bauer, Tetrahedron Comput. Methodol. 2, 269 (1989).

    Google Scholar 

  79. E. Fontain, J. Bauer, and I. Ugi, Chem. Lett. 1987, 37; Z. Naturforsch. B 42, 297 (1987); E. Fontain, Tetrahedron Comput. Methodol. 3, 469 (1990).

    Google Scholar 

  80. D. Forstmeyer, J. Bauer, E. Fontain, R. Herges, R. Herrmann, and I. Ugi, Angew. Chem. 100 1618 (1988); Angew. Chem. Int. Ed. Engl. 27, 1558 (1988); J. Bauer E. Fontain, D. Forstmeyer, and I. Ugi, Tetrahedron Comput. Methodol. 1, 129 (1988); I. Ugi, J. Bauer, R. Baumgartner, E. Fontain, D. Forstmeyer, and S. Lohberger, Pure Appl. Chem. 60, 1573 (1988).

    Article  CAS  Google Scholar 

  81. G. B. Fisher, J. J. Juarez-Brambila, C. T. Goralski, W. T. Wipke, and B. Singaram, J. Am. Chem. Soc. 115, 440 (1993).

    Article  CAS  Google Scholar 

  82. L. Weber, Evolutionary Algogorithms in Molecular Design, edited by D. Clark, Wiley-VCH, Weinheim, 2000, p. 137–158.

    Chapter  Google Scholar 

  83. L. Weber, Virtual Screening in Bioactive Molecules, H.-J. Bohm, G. Scheider, Wiley-VCH, Weinheim, 2000, p. 187–206.

    Google Scholar 

  84. L. Weber, K. Illgen, and M. Almstetter, Synlett, 3, 366 (1999); L. Weber and M. Almstetter, Molecular Diversity in Drug Design, edited by P. M. Dean and R. A. Lewis, Kluwer Academic Publisher, Dordrecht, 1999, p. 93-114.

    Article  Google Scholar 

  85. M. Almstetter, Daylight MUG 2001, March 6–9, 2001, Santa Fe, New Mexico, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Ugi, I., Roβ, G., Burdack, C. (2003). The Chemical Progress of Multicomponent Reactions. In: Geckeler, K.E. (eds) Advanced Macromolecular and Supramolecular Materials and Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8495-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8495-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4630-2

  • Online ISBN: 978-1-4419-8495-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics