Skip to main content

Biofuel Cells Based on Monolayer- Functionalized Biocatalytic Electrodes

  • Chapter
Advanced Macromolecular and Supramolecular Materials and Processes

Abstract

Biofuel cells use biocatalysts for the conversion of chemical energy to electrical energy.1-3 As most organic substrates undergo combustion with the evolution of energy, the biocatalyzed oxidation of organic substances by oxygen at two-electrode interfaces provides a means for the conversion of chemical to electrical energy. Abundant organic raw materials such as methanol or glucose can be used as substrates for the oxidation processes at the anode, whereas molecular oxygen or H2O2 can act as the substrate being reduced at the cathode. The extractable power of a fuel cell (Pcell) is the product of the cell voltage (Vcell) and the cell current (Icell) (Eq. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. J. Aston and A. P. F. Turner, Biosensors and biofuel cells, biotech. Gen. Eng. Rev. 1, 89–120 (1984).

    CAS  Google Scholar 

  2. C. van Dijk, C. Laane, and C. Veeger, Biochemical fuel cells and amperometric biosensors, Recl. Trav. Chim. Pays-Bas 104, 245–252 (1985).

    Article  Google Scholar 

  3. G. Tayhas, R. Palmore, and G. Whitesides, Microbial and Enzymatic Biofuel Cells, in: Enzymatic conversion of biomass for fuels production, edited by M. E. Himmel, J. O. Baker, and R. P. Overend (Am. Chem. Soc., Washington, DC, 1994), Chapter 14, pp. 271–290.

    Google Scholar 

  4. I. Willner and E. Katz, Integration of layered redox-proteins and conductive supports for bioelectronic applications, Angew. Chem. Int. Ed. 39, 1180–1218 (2000).

    Article  Google Scholar 

  5. I. Willner, E. Katz, and B. Willner, Electrical-contact of redox enzyme layers associated with electrodes: routes to amperometric biosensors, Electroanalysis 13, 965–977 (1997).

    Article  Google Scholar 

  6. A. L. Lehninger, Biochemistry (Worth, New York, 1975), p. 479.

    Google Scholar 

  7. P. N. Bartlett, P. Tebbutt, and R. C. Whitaker, Kinetic Aspects of the use of modified electrodes and mediators in bioelectrochemistry, Prog. Reaction Kinetics 16, 55–155 (1991).

    CAS  Google Scholar 

  8. I. Katakis, and E. Dominguez, Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors, Mikrochim. Acta 126, 11–32 (1997).

    Article  CAS  Google Scholar 

  9. I. Willner and A. Riklin, Electrical communication between electrode and NAD(P)+-dependent enzymes using pyrroloquinoline quinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors, Anal. Chem. 66, 1535–1539 (1994).

    Article  CAS  Google Scholar 

  10. E. Katz, T. Lötzbeyer, D. D. Schlereth, W. Schuhmann, and H.-L. Schmidt, E lectrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum electrode surfaces modified with a monolayer of pyrroloquinoline quinone. effect of Ca2+ cations, J. Electroanal. Chem. 373, 189–200 (1994).

    Article  Google Scholar 

  11. M. Maurice and J. Souppe, Spectral, Biochemical, and electrochemical properties of chemically modified nicotinamide adenine dinucleotides, New J. Chem. 14, 301–304 (1990).

    CAS  Google Scholar 

  12. A. F. Bückmann and V. Wray, A simplified procedure for the synthesis and purification of N 6-(2-Aminoethyl)-NAD+ and tricyclic N 6-ethanoadenine-NAD+, Biotechnol. Biochem. 15, 303–310 (1992).

    Google Scholar 

  13. J. Hendle, A. F. Bückmann, W. Aehle, D. Schomburg, and R. D. Schmid, Structure-activity relationship of adenine-modified NAD+ derivatives with respect to porcine heart lactate-dehydrogenase isozyme H-4 simulated with molecular mechanics, Eur. J. Biochem. 213, 947–956 (1993).

    Article  CAS  Google Scholar 

  14. A. B. Kharitonov, L. Alfonta, E. Katz, and I. Willner, Probing of bioaffinnity interactions at interfaces using impedance spectroscopy and chronopotentiometry, J. Electroanal. Chem. 487, 133–141 (2000).

    Article  CAS  Google Scholar 

  15. E. Katz, V. Heleg-Shabtai, A. Bardea, I. Willner, H. K. Rau, and W. Haehnel, Fully integrated biocatalytic electrodes based on bioaffinity interactions, Biosens. Bioelectron. 13, 741–756 (1998).

    Article  CAS  Google Scholar 

  16. A. Bardea, E. Katz, A. F. Bückmann, and I. Willner, NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc. 119, 9114–9119 (1997).

    Article  Google Scholar 

  17. A. Riklin, E. Katz, I. Willner, A. Stocker, and A. F. Bückmann, Reconstitution of flavoenzyme-derived apoproteins with ferrocene-modified FAD cofactor yields electroactive enzymes, Nature 376, 672–675 (1995).

    Article  CAS  Google Scholar 

  18. I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A. F. Bückmann, and A. Heller, Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto au-electrodes, J. Am. Chem. Soc. 118, 10321–10322 (1996).

    Article  CAS  Google Scholar 

  19. E. Katz, A. Riklin, V. Heleg-Shabtai, I. Willner, and A. F. Bückmann, Glucose Oxidase Electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors, Anal. Chim. Acta 385, 45–58 (1999).

    Article  CAS  Google Scholar 

  20. K. J. Vetter, Electrochemical kinetics (Academic Press, New York, 1967).

    Google Scholar 

  21. R. R. Bessette, J. M. Cichon, D. W. Dischert, and E. G. Dow, A study of cathode catalysis for the aluminium / hydrogen peroxide semi-fuel cell, J. Power Sources 80, 248–253 (1999).

    Article  CAS  Google Scholar 

  22. O.’M. Bockris and S. Srinivasan, Fuel cells: Their electrochemistry (McGraw-Hill, New York, 1969).

    Google Scholar 

  23. T. Ruzgas, E. Csöregi, J. Emneus, L. Gorton, and G. Marko-Varga, Peroxidase-modified electrodes: fundamentals and application, Anal. Chim. Acta 330, 123–138 (1996).

    Article  CAS  Google Scholar 

  24. P. A. Adams, Microperoxidases and iron porphyrins, in: Peroxidases in chemistry and biology, edited by J. Everse, K.E. Everse, and M.B. Grisham (CRC Press, Boca Raton, 1991), Vol. II, Chapter 7, pp. 171–200.

    Google Scholar 

  25. T. Lötzbeyer, W. Schuhmann, E. Katz, J. Falter, and H.-L. Schmidt, Direct Electron Transfer between the Covalently Immobilized Enzyme Microperoxidase MP-11 and a Cystamine-Modified Gold Electrode, J. Electroanal. Chem. 377, 291–294 (1994).

    Article  Google Scholar 

  26. E. Katz and I. Willner, Kinetic separation of amperometric responses of composite redox-active monolayers assembled onto au-electrodes: implication to the monolayer structure and composition, Langmuir 13, 3364–3373 (1997).

    Article  CAS  Google Scholar 

  27. A. M. Klibanov, Enzymatic catalysis in anhydrous organic-solvents, Trends Biochem. Sci. 14, 141–144 (1989).

    Article  CAS  Google Scholar 

  28. J. Li, S. N. Tan and J. T. Oh, Silica sol-gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase, J. Electroanal. Chem. 448, 69–77 (1998).

    Article  CAS  Google Scholar 

  29. L. Yang, and R.W. Murray, Spectrophotometric and Electrochemical Kinetic Studies of Poly(ethylene glycol)-Modified Horseradish Peroxidase Reactions in Organic-Solvents and Aqueous Buffers, Anal. Chem. 66, 2710–2718 (1994).

    Article  CAS  Google Scholar 

  30. A. N. J. Moore, E. Katz, and I. Willner, Electrocatalytic reduction of organic peroxides in organic solvents by microperoxidase-11 immobilized as a monolayer on a gold electrode, J. Electroanal Chem. 417, 189–192 (1996).

    Article  CAS  Google Scholar 

  31. E. Katz, B. Filanovsky, and I. Willner, A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes, New J. Chem. 23, 481–487 (1999).

    Article  CAS  Google Scholar 

  32. J.P. Collman and K. Kim, Electrocatalytic four-electron reduction of dioxygen by iridium porphyrins adsorbed on graphite, J. Am. Chem. Soc. 108, 7847–7849 (1986).

    Article  CAS  Google Scholar 

  33. G. T. R. Palmore and H. Kim, Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell, J. Electroanal. Chem. 464, 110–117 (1999).

    Article  CAS  Google Scholar 

  34. E. Katz, I. Willner, and A. B. Kotlyar, A non-compartmentalized glucose-O2 biofuel cell by bioengineered electrode surfaces, J. Electroanal. Chem. 479, 64–68 (1999).

    Article  CAS  Google Scholar 

  35. V. Pardo-Yissar, E. Katz, I. Willner, A. B. Kotlyar, C. Sanders, and H. Lill, Biomaterial engineered electrodes for bioelectronics, Faraday Discussions 116, 119–134 (2000).

    Article  CAS  Google Scholar 

  36. D. S. Goodsell, and A. J. Olson, Soluble proteins-size, shape and function, Trends Biochem. Sci. 18, 65–68 (1993).

    Article  CAS  Google Scholar 

  37. A. E. G. Cass, G. Davis, H. A. O. Hill, and D. J. Nancarrow, The reaction of flavocytochrome b2 with cytochrome c and ferricinium carboxylate. Comparative kinetics by cyclic voltammetry and chronoamperometry, Biochim. Biophys. Acta 828, 51–57 (1985).

    Article  CAS  Google Scholar 

  38. M. Lion-Dagan, E. Katz, and I. Willner, A bifunctional monolayer electrode consisting of 4-pyridyl sulfide and photoisomerizable spiropyran: photoswitchable electrical communication between the electrode and cytochrome c, J. Chem. Soc., Chem. Comm. 2741–2742 (1994).

    Google Scholar 

  39. I. Willner, G. Arad, and E. Katz, A biofuel cell based on pyrroloquinoline quinone and micro-peroxidase-11 monolayer-functionalized electrodes, Bioelectrochem. Bioenerg. 44, 209–214 (1998).

    Article  CAS  Google Scholar 

  40. P. Delahay, Double layer and electrode kinetics (Wiley, New York, 1965).

    Google Scholar 

  41. I. Willner, E. Katz, F. Patolsky, and A. F. Bückmann, A biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes, J. Chem. Soc., Perkin Trans. 2, 1817–1822 (1998).

    Google Scholar 

  42. A. G. Volkov and D. W. Deamer, Liquid-liquid interface theory and methods (CRC, Boca Raton, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Katz, E., Willner, I. (2003). Biofuel Cells Based on Monolayer- Functionalized Biocatalytic Electrodes. In: Geckeler, K.E. (eds) Advanced Macromolecular and Supramolecular Materials and Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8495-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8495-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4630-2

  • Online ISBN: 978-1-4419-8495-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics