Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 120))

  • 6098 Accesses

Abstract

In this section, we present some examples of pairs of problems that are inverse to each other. We start with some simple examples that are normally not even recognized as inverse problems. Most of them are taken from the survey article [136] and the monograph [99].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Adams and J. Fournier. Sobolev Spaces. Academic Press, 2nd, repr. edition, 2005.

    Google Scholar 

  2. G. Anger. Uniquely determined mass distributions in inverse problems. Technical report, Veröffentlichungen des Zentralinstituts für Physik der Erde, 1979.

    Google Scholar 

  3. G. Anger. Einige Betrachtungen über inverse Probleme, Identifikationsprobleme und inkorrekt gestellte Probleme. In Jahrbuch Überblicke Mathematik, pages 55–71. Springer, Berlin, 1982.

    Google Scholar 

  4. H.T. Banks and K. Kunisch. Estimation Techniques for Distributed Parameter Systems. Birkhäuser, Boston, 1989.

    Book  MATH  Google Scholar 

  5. J. Baumeister. Stable Solutions of Inverse Problems. Vieweg, Braunschweig, 1987.

    Book  Google Scholar 

  6. K.E. Bullen and B. Bolt. An Introduction to the Theory of Seismology. Cambridge University Press, Cambridge, UK, 1985.

    MATH  Google Scholar 

  7. B.L. Buzbee and A. Carasso. On the numerical computation of parabolic problems for preceding times. Math. Comput., 27:237–266, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.R. Cannon. The One-Dimensional Heat Equation. Addison-Wesley, Reading, MA, 1984.

    Book  MATH  Google Scholar 

  9. J.R. Cannon and C.D. Hill. Existence, uniqueness, stability and monotone dependence in a Stefan problem for the heat equation. J. Math. Mech., 17:1–19, 1967.

    MathSciNet  MATH  Google Scholar 

  10. A. Carasso. Error bounds in the final value problem for the heat equation. SIAM J. Math. Anal., 7:195–199, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Colton. The approximation of solutions to the backwards heat equation in a nonhomogeneous medium. J. Math. Anal. Appl., 72:418–429, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Colton. The inverse scattering problem for time–harmonic acoustic waves. SIAM Review, 26:323–350, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Wiley-Interscience, New York, 1983.

    MATH  Google Scholar 

  14. D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York, 2nd edition, 1998.

    MATH  Google Scholar 

  15. L. Eldén. Regularization of the backwards solution of parabolic problems. In G. Anger, editor, Inverse and Improperly Posed Problems in Differential Equations, Berlin, 1979. Akademie Verlag.

    Google Scholar 

  16. L. Eldén. Time discretization in the backward solution of parabolic equations. Math. Comput., 39:53–84, 1982.

    MATH  Google Scholar 

  17. R.E. Ewing. The approximation of certain parabolic equations backwards in time by Sobolev equations. SIAM J. Math. Anal., 6:283–294, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Fasano and M. Primicerio. General free-boundary problems for the heat equation. Parts I, II. J. Math. Anal. Appl., 57, 58:694–723, 202–231, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  19. V.B. Glasko. Inverse Problems of Mathematical Physics. American Institute of Physics, New York, 1984.

    MATH  Google Scholar 

  20. R. Gorenflo and S. Vessella. Abel Integral Equations, Analysis and Applications, volume 1461 of Lecture Notes in Mathematics. Springer–Verlag, Berlin, 1991.

    Google Scholar 

  21. C.W. Groetsch. Inverse Problems in the Mathematical Sciences. Vieweg, Braunschweig Wiesbaden, 1993.

    MATH  Google Scholar 

  22. J. Hadamard. Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven, 1923.

    Google Scholar 

  23. S. Helgason. The Radon Transform. Birkhäuser–Verlag, Boston, 1980.

    MATH  Google Scholar 

  24. G.T. Herman, editor. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, New York, 1980. Academic Press.

    MATH  Google Scholar 

  25. G.T. Herman and F. Natterer, editors. Mathematical Aspects of Computerized Tomography, volume 8 of Lecture Notes in Medical Informatics, New York, 1981. Springer.

    Google Scholar 

  26. J.B. Keller. Inverse problems. Am. Math. Mon., 83:107–118, 1996.

    Article  Google Scholar 

  27. C. Kravaris and J.H. Seinfeld. Identification of parameters in distributed parameter systems by regularization. SIAM J. Control Optim., 23:217–241, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Lanczos. Linear Differential Operators. Van Nostrand, New York, 1961.

    MATH  Google Scholar 

  29. M.M. Lavrentiev, V.G. Romanov, and V.G. Vasiliev. Multidimensional Inverse Problems for Differential Equations, volume 167 of Springer Lecture Notes. Springer, New York, 1970.

    MATH  Google Scholar 

  30. P.D. Lax and R.S. Phillips. Scattering Theory. Academic Press, New York, London, 1967.

    MATH  Google Scholar 

  31. P. Linz. Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia, 1985.

    Book  MATH  Google Scholar 

  32. A.K. Louis. Inverse und schlecht gestellte Probleme. Teubner–Verlag, Stuttgart, 1989.

    Book  MATH  Google Scholar 

  33. A.K. Louis. Medical imaging, state of art and future developments. Inverse Problems, 8:709–738, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  34. A.K. Louis and F. Natterer. Mathematical problems in computerized tomography. Proc. IEEE, 71:379–389, 1983.

    Article  Google Scholar 

  35. C.A. Miccelli and T.J. Rivlin. A survey of optimal recovery. In C.A. Miccelli and T.J. Rivlin, editors, Optimal Estimation in Approximation Theory, New York, 1977. Plenum Press.

    Google Scholar 

  36. K. Miller. Efficient numerical methods for backward solution of parabolic problems with variable coefficients. In A. Carasso, editor, Improperly Posed Problems, Boston, 1975. Pitman.

    Google Scholar 

  37. D.A. Murio. The Mollification Method and the Numerical Solution of Ill-Posed Problems. John Wiley, New York, 1993.

    Book  Google Scholar 

  38. S.I. Nakagiri. Review of Japanese work of the last ten years on identifiability in distributed parameter systems. Inverse Problems, 9:143–191, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Natterer. The Mathematics of Computerized Tomography. Teubner, Stuttgart, 1986.

    MATH  Google Scholar 

  40. R.L. Parker. Understanding inverse theory. Ann. Rev. Earth Planet. Sci., 5:35–64, 1977.

    Article  Google Scholar 

  41. G.R. Richter. An inverse problem for the steady state diffusion equation. SIAMJAP, 41:210–221, 1981.

    MATH  Google Scholar 

  42. G.R. Richter. Numerical identification of a spacially varying diffusion coefficient. Math. Comput., 36:375–386, 1981.

    Article  MATH  Google Scholar 

  43. R.E. Showalter. The final value problem for evolution equations. J. Math. Anal. Appl., 47:563–572, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  44. B.D. Sleeman. The inverse problem of acoustic scattering. IMA J. Appl. Math., 29:113–142, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Stefan. Über einige Probleme der Theorie der Wärmeleitung. S.-Ber. Wien Akad. Mat. Nat., 98:173, 616, 956, 1418, 1889.

    Google Scholar 

  46. J.M. Varah. Pitfalls in the numerical solution of linear ill-posed problems. SIAM J. Sci. Stat. Comput., 4:164–176, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  47. G.M. Wing. A Primer on Integral Equation of the First Kind. The Problem of Deconvolution and Unfolding. SIAM, Philadelphia, 1992.

    Google Scholar 

  48. D. Zidarov. Inverse Gravimetric Problems in Geoprospecting and Geodesy. Elsevier, Amsterdam, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kirsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kirsch, A. (2011). Introduction and Basic Concepts. In: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol 120. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8474-6_1

Download citation

Publish with us

Policies and ethics