Skip to main content
  • 830 Accesses

Abstract

Since the 1960s, we have progressed from little expectation of survival for children with acute lymphoblastic leukemia (ALL) to 80% 5-year event-free survival and probable long-term cure. Therapy is long and toxic in terms of the physical, emotional and psychological impact on our patients and their families. We can try to alleviate wherever possible those side effects but must not do so at the expense of significantly worsened survival. The balance to be achieved between efficacy and toxicity must be quantified and assessed. How that has been achieved is one of the medical success stories of the twentieth century. It is useful to explore the pathway along which the early pioneers made their progress towards finding potential curative therapy, what mistakes we have made along the way and how we can improve therapy further, to achieve 100% cure rates. Can we improve on the way in which we use our currently available cytotoxics, or do we need totally new approaches for some or all ALL patients?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velpeau A. Sur la resorption du pusaet sur l’alteration du sang dans les maladies clinique de persection nenemant. Premier observation. Rev Med. 1827; 2:216.

    Google Scholar 

  2. Virchow R. Weisses blut. Notiz Geb Natur Heilk. 1845; 36:152–6.

    Google Scholar 

  3. Bennett JH. Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinburgh Med Surg J. 1845; 64:413–423.

    Google Scholar 

  4. Craigie D. Case of disease of the spleen in which death took place in consequence of the presence of purulent matter in the blood. Edinburgh Med Surg J. 1845; 64:400–413.

    Google Scholar 

  5. Virchow R. Die leukämie. In Virchow R (ed) Gesammelte abhandlungen zur wissenschaft lichen medizin. Frankfurt Meidinger. 1856; 190–211.

    Google Scholar 

  6. Friedreich N. Ein neuer fall von leukämie. Virchow’s Arch Pathol Anat. 1857; 12:37–58.

    Article  Google Scholar 

  7. Neumann E. Ueber myelogene leukämie. Berl Klin Wochenschr. 1878; 15:69–72.

    Google Scholar 

  8. Piller GJ. Leukemia – A brief historical review from ancient times to 1950. British Journal of Haematology. 2001; 12:282–292.

    Article  Google Scholar 

  9. Pui C-H, Robison L, Look AT. Acute lymphoblastic leukemia. Lancet. 2008; 371:1030–43.

    Article  PubMed  CAS  Google Scholar 

  10. Lissauer H. Zwei fälle von leucaemie. Berl Klin Wochenschr. 1865; 2:403–404.

    Google Scholar 

  11. Senn N. The therapeutic value of the Roentgen ray in the treatment of pseudo leukemia. N Y Med J. 1903; 77:665–668.

    Google Scholar 

  12. Lawrence JH. Nuclear physics and therapy: preliminary report on a new method for the treatment of leukemia and polycythemia. Radiology. 1940; 35:51–60.

    CAS  Google Scholar 

  13. Farber S, Diamond LK, Mercer RD et al. Temporary remissions in acute leukemia in children produced by the folic acid antagonist, 4-amino-pteroyl glutamic acid (aminopterin). N Engl J Med. 1948; 238:787–793.

    Article  PubMed  CAS  Google Scholar 

  14. Seeger DR, Smith JM, Hultquist ME. Antagonist for pteroylglutamic acid. J Am Chem Soc. 1947; 69:2567.

    Article  PubMed  CAS  Google Scholar 

  15. Farber S. The effect of ACTH in acute leukemia in childhood. In Mote JR (ed) First Clinical ACTH Conference New York. Blakiston. 1950; 325.

    Google Scholar 

  16. Farber S, Toch R, Seers EM et al. Advances in chemotherapy of cancer in man. Adv Cancer Res. 1956; 4:1–71.

    Article  PubMed  CAS  Google Scholar 

  17. Burchenal JH, Murphy ML, Ellison RR et al. Clinical evaluation of a new antimetabolite, 6 mercaptopurine, in treatment of leukemia and allied diseases. Blood. 1953; 8:965–999.

    PubMed  CAS  Google Scholar 

  18. Goodman LS, Wintrobe MW, Dameshek W et al. Nitrogen mustard therapy. Use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders. JAMA. 1946; 132:126–132.

    CAS  Google Scholar 

  19. Fernbach DJ, Sutow WW, Thurman WG et al. Clinical evaluation of cyclophosphamide. A new agent for the treatment of children with acute leukemia. JAMA. 1962; 182:30–37.

    PubMed  CAS  Google Scholar 

  20. Rowinsky EK, Donehover RC. Antimicrotubule agents. In: Chabner BA, Longo DL (eds) Cancer chemotherapy and biotherapy: principles and practice. JB Lippincot Company, Philadelphia. 1996; 263–293.

    Google Scholar 

  21. Burchenal JH, Murphy ML. Long term survivors in acute leukemia. Cancer Res. 1965; 25:1491–1494.

    PubMed  CAS  Google Scholar 

  22. Zuelzer WW. Implications of long-term survival in acute stem cell leukemia treated with composite cyclic therapy. Blood. 1964; 24:477–494.

    PubMed  CAS  Google Scholar 

  23. Krivit W, Gilchrist G, Beatty E. The need for chemotherapy after prolonged complete remission in acute leukemia of childhood. J Pediatr. 1970; 76:138–141.

    Article  PubMed  CAS  Google Scholar 

  24. Frei E III, Karon M, Levin RH et al. The effectiveness of combinations of antileukemia agents in inducing and maintaining remission in children with acute leukemia. Blood. 1965; 26:642–656.

    PubMed  Google Scholar 

  25. George P, Hernandez K, Hustu O et al. A study of ‘total therapy’ of acute leukemia in ­children. J Pediatr. 1968; 72:399–408.

    Article  PubMed  CAS  Google Scholar 

  26. Pinkel D. Five-year follow up of ‘total therapy’ of childhood lymphocytic leukemia. JAMA. 1971; 216:648–652.

    Article  PubMed  CAS  Google Scholar 

  27. Pinkel D, Hernandez K, Borella L et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer. 1971; 27:247–256.

    Article  PubMed  CAS  Google Scholar 

  28. Aur RJA, Simone JV, Hustu HO et al. A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer. 1972; 29:381–391.

    Article  PubMed  CAS  Google Scholar 

  29. Schrappe M, Camitta B, Pui C-H et al. Spotlight on long term results of pediatric ALL clinical trials from 12 study groups worldwide. Leukemia. 2000; 14:2193–2195.

    Article  PubMed  CAS  Google Scholar 

  30. Medical Research Council. The treatment of acute lymphoblastic leukemia in childhood leukemia UK ALL III. The effects of added cytosine arabinoside and/or asparaginase and a comparison of continuous or discontinuous mercaptopurine in regimens for standard-risk ALL. Medical and Pediatric Oncology. 1982; 10:501–510.

    Article  Google Scholar 

  31. Medical Research Council UK ALL Trials 1972–84. Improvement in treatment for children with acute lymphoblastic leukemia. Report to the Council by the Working Party on Leukemia in Childhood. Lancet. 1986; 1:408–411.

    Google Scholar 

  32. Schrappe M, Reiter A, Riehm H. Cyto reduction and prognosis in childhood acute lymphoblastic leukemia. Journal of Clinical Oncology. 1996; 14:2403–2406.

    PubMed  CAS  Google Scholar 

  33. Balis FM, Lester CM, Chrousos GP et al. Differences in cerebro-spinal fluid penetration of cortico-steroids: possible relationship to the prevention of meningeal leukemia. Journal of Clinical Oncology. 1987; 5:202–207.

    PubMed  CAS  Google Scholar 

  34. Veerman AJP, Hählen K, Kamps WA et al. High cure rate with a moderately intensive treatment regimen in non-high risk childhood acute lymphoblastic leukemia: results of protocol ALL VI from the Dutch Childhood Leukemia Study Group. Journal of Clinical Oncology. 1996; 14:911–918.

    PubMed  CAS  Google Scholar 

  35. Bostrom BC, Sensel MR, Sather HN et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute ­lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003; 101:3809–3817.

    Article  PubMed  CAS  Google Scholar 

  36. Mitchell CD, Richards SM, Kinsey SE et al. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukemia: results of the UK Medical Research Council ALL 97 randomised trial. Br J Haematol. 2005; 128:734–745.

    Article  CAS  Google Scholar 

  37. Igarashi S, Manabe A, Ohara A et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Toyko Children’s Cancer Study Group L 95 – 14 protocol. J Clin Oncol. 2005; 23:6489–98.

    Article  PubMed  CAS  Google Scholar 

  38. Richter O, Ern B, Reinhardt D, Becker B. Pharmacokinetics of dexamethasone in children. Pediatric Pharmacol. 1983; 3:329–337.

    CAS  Google Scholar 

  39. Thompson EB. Apoptosis and steroid hormones. Mol Endocrinol. 1994; 8:665–673.

    Article  PubMed  CAS  Google Scholar 

  40. Laane E, Panaretakis T, Pokrovskaja K et al. Dexamethasone induced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members. Haematologica. 2007; 92 (11):1460–1469.

    Article  PubMed  CAS  Google Scholar 

  41. Wood AC, Elvin P, Hickman JA. Induction of apoptosis by anti-cancer drugs with disparate modes of action: kinetics of cell death and changes in C-MYC expression. Br J Cancer. 1995; 71:937–941.

    Article  PubMed  CAS  Google Scholar 

  42. Ito C, Evans WE, McNinch L et al. Comparative cytotoxicity of dexamethasone and prenisolone in childhood acute lymphoblastic leukemia. J Clin Oncol. 1996; 14:2370–2376.

    PubMed  CAS  Google Scholar 

  43. Kaspers GJ, Veerman AJ, Popp-Snijders C et al. Comparison of the anti-leukemic activity in vitro of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia. Med Pediatr Oncol. 1996; 27:114–121.

    Article  PubMed  CAS  Google Scholar 

  44. Quddus FF, Leventhal BG, Boyett JM et al. Glucocorticoid receptors in immunological subtypes of childhood acute lymphoblastic leukemia cells: a pediatric oncology group study. Cancer Res. 1985; 45:6482–6486.

    PubMed  CAS  Google Scholar 

  45. Wei G, Twomey D, Lamb J et al. Gene expression based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 2006; 10:331–342.

    Article  PubMed  CAS  Google Scholar 

  46. Schrappe M, Reiter A, Ludwig WD. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL – BFM90. Blood. 2000; 95:3310–3322.

    PubMed  CAS  Google Scholar 

  47. Karon M, Freireich E, Frei E. The role of vincristine in the treatment of childhood acute leukemia. Clin Pharmacol Ther. 1966; 7:332–339.

    PubMed  CAS  Google Scholar 

  48. Crom WR, Siebold SN, Syold T et al. Pharmacokinetics of vincristine in children and adolescents with acute lymphoblastic leukemia. J Pediatr. 1994; 125:642–649.

    Article  PubMed  CAS  Google Scholar 

  49. Lönnerholm G, Frost BM, Abrahamsson J et al. Vincristine pharmacokinetics is related to clinical outcome in children with standard-risk acute lymphoblastic leukemia. British Journal of Haematology. 2008; 142:616–621.

    Article  PubMed  CAS  Google Scholar 

  50. Yeoh E-J, Ross ME, Shurtleff SA et al. Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002; 1:133–143.

    Article  PubMed  CAS  Google Scholar 

  51. Holleman A, Cheok MH, den Boer ML et al. Gene expression patterns in drug resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004; 351:533–542.

    Article  PubMed  CAS  Google Scholar 

  52. Cario G, Stanulla M, Fine BM et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood. 2005; 105:821–826.

    Article  PubMed  CAS  Google Scholar 

  53. Cheok MH, Evans WE. Acute lymphoblastic leukemia: a model for the pharmacogenomics of cancer therapy. Nature Reviews Cancer. 2006; 6:117–129.

    Article  PubMed  CAS  Google Scholar 

  54. Becker FF, Broome JD. L-asparaginase: inhibition of early mitoses in regenerating rat liver. Science. 1967; 156:1602–1603.

    Article  PubMed  CAS  Google Scholar 

  55. Mashburn LT, Wriston JC. Tumour inhibitory effect from Escherichia coli. Archives of Biochemistry and Biophysics. 1964; 105:450–452.

    Article  PubMed  CAS  Google Scholar 

  56. Wade HE, Elsworth R, Herbert E et al. A new L-asparaginase with anti-tumour activity? Lancet. 1968; 2:776–777.

    Article  PubMed  CAS  Google Scholar 

  57. Pinheiro JPV, Boos J. The best way to use asparaginase in childhood acute lymphoblastic leukemia still to be defined. British Journal of Haematology. 2004; 125:117–127.

    Article  PubMed  Google Scholar 

  58. Appel IM, Kazemier KM, Boos J et al. Pharmacokinetic, pharmacodynamic and intracellular effects of PEG-asparaginase in newly diagnosed childhood acute lymphoblastic leukemia: results from a single agent window study. Leukemia. 2008;22:1665–1679.

    Google Scholar 

  59. Iwamoto S, Mihara K, Downing JR. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. The Journal of Clinical Investigation. 2007; 117:1049–1057.

    Article  PubMed  CAS  Google Scholar 

  60. Patel N, Krishnan S, Offman MN et al. A dyad of lymphoblastic lysosomal cysteine proteases degrade the key anti-leukemic drug L-asparaginase. Journal of Clinical Investigation. 2009; 119(7):1964–1973.

    PubMed  CAS  Google Scholar 

  61. Yang L, Panetta JC, Cai X et al. Asparaginase may influence dexamethasone pharmacokinetics in acute lymphoblastic leukemia. Journal of Clinical Oncology. 2008; 26(12):1932–1939.

    Article  PubMed  CAS  Google Scholar 

  62. Doroshow JH. Anthracyclines and anthracenediones. In: Chabner BA, Longo DL (eds) Chemotherapy and biotherapy: principles and practice. JB Lippincott Company, Philadelphia. 1996; 409–434.

    Google Scholar 

  63. Klumper E, Pieters R, Veerman AP et al. In vitro cellular drug resistance in children with relapsed/ refractory acute lymphoblastic leukemia. Blood. 1995; 86:3861–3868.

    PubMed  CAS  Google Scholar 

  64. Eden OB, Lilleyman JS, Richards S et al. Results of Medical Research Council Childhood Leukemia Trial UK ALL VIII. British Journal of Haematology. 1991; 78:187–196.

    Article  PubMed  CAS  Google Scholar 

  65. Lilleyman JS, Gibson BS, Stevens RF et al. Clearance of marrow infiltration after one week therapy for childhood lymphoblastic leukemia: clinical importance and the effect of daunorubicin. Br J Haematol. 1997; 97:603–606.

    Article  PubMed  CAS  Google Scholar 

  66. Eden OB, Harrison G, Richards S et al. Long term follow up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukemia, 1980–1997. Leukemia. 2000; 14(12):2307–2320.

    Article  PubMed  CAS  Google Scholar 

  67. Riehm H, Gadner H, Henze G et al. Acute lymphoblastic leukemia. Treatment results in 3 BFM studies (1970–1981). In: Murphy SB, Gilbert JR (eds) Leukemia Research: Advances in cell biology and treatment. Elsevier Biomedical, New York. 1998; 251–263.

    Google Scholar 

  68. Lipschultz SE, Colan SD, Gelber RD et al. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991; 324:808–815.

    Article  Google Scholar 

  69. Ng A, Taylor GM, Eden OB. Treatment-related leukemia – a clinical and scientific challenge. Cancer Treatment Reviews. 2000; 6:377–391.

    Google Scholar 

  70. Eden OB, Lilleyman JS, Shaw MP et al. MRC Leukemia Trial VIII compared with trials II – VII: lessons for future management. Haematology, Blood Transfusion. 1987; 30:448–455.

    CAS  Google Scholar 

  71. Van Dongen JJ, Seriu T, Panzer-Grumayer ER et al. Prognostic value of minimal residual disease in acute lymphoblastic leukemia in childhood. Lancet. 1998; 352:1731–1738.

    Article  PubMed  Google Scholar 

  72. Coustan-Smith E, Sancho J, Behm FG et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002; 100:52–58.

    Article  PubMed  CAS  Google Scholar 

  73. Loh ML, Goldwasser MA, Silverman LB et al. Prospective analysis of TEL/ AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95 – 01. Blood. 2006; 107:4508–4513.

    Article  PubMed  CAS  Google Scholar 

  74. Pui C-H, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006; 354(2):166–178.

    Article  PubMed  CAS  Google Scholar 

  75. Nachman JB, Sather HN, Sensel MG et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med. 1998; 338:1663–1671.

    Article  PubMed  CAS  Google Scholar 

  76. Chessells JM, Bailey CC, Richards SM. Intensification of treatment and survival in all children with lymphoblastic leukemia: results of the UK MRC Trial UKALL X. Lancet. 1995; 345:143–148.

    Article  PubMed  CAS  Google Scholar 

  77. Hill FGH, Richards SM, Gibson B et al. Successful treatment without cranial radiotherapy of children receiving intensified chemotherapy for acute lymphoblastic leukemia. Results of the risk stratified randomised CNS treatment trial MRC UKALL XI. Br J Haematol. 2004; 124 (1):33–46.

    Article  PubMed  CAS  Google Scholar 

  78. Kager L, Cheok M, Yang W et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. The Journal of Clinical Investigation. 2005; 115(1):110–117.

    PubMed  CAS  Google Scholar 

  79. Pui C-H, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med. 2004; 350:1535–1548.

    Article  PubMed  CAS  Google Scholar 

  80. Raimondi SC, Behm FG, Robertson PK et al. Cytogenetics of pro-B cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t (1;19). J Clin Oncol. 1990; 8:1380–1388.

    PubMed  CAS  Google Scholar 

  81. Skärby TV, Anderson H, Heldrup J et al. High leucovorin doses during high-dose methotrexate treatment may reduce the cure rate in childhood lymphoblastic leukemia. Leukemia. 2006; 20:1955–1962.

    Article  PubMed  CAS  Google Scholar 

  82. Niini T, Kanerva J, Vettenranta K et al. AML1 gene amplification: a novel finding in childhood ALL. Haematologica. 2000; 85:362–366.

    PubMed  CAS  Google Scholar 

  83. Harewood L, Robinson H, Harris R et al. Amplification of AMLI on a duplicated ­chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia. 2003; 17:547–553.

    Article  PubMed  CAS  Google Scholar 

  84. Moorman AV, Richards SM, Robinson HM et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007; 109:2327–2330.

    Article  PubMed  CAS  Google Scholar 

  85. Toyoda Y, Manabe A, Tsuchida M et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol. 2000; 18:1508–1516.

    PubMed  CAS  Google Scholar 

  86. Lennard L, Lilleyman JS, Van Loon J et al. Genetic variation in response to 6 – mercaptopurine for childhood acute leukemia. Lancet. 1990; 336:225–229.

    Article  PubMed  CAS  Google Scholar 

  87. Relling MV, Hancock ML, Boyett JM et al. Prognostic importance of 6 –mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999; 93:2817–2823.

    PubMed  CAS  Google Scholar 

  88. Stanulla M, Schaeffëler E, Flohr T et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA. 2005; 293(12):1485–1489.

    Article  PubMed  CAS  Google Scholar 

  89. Stork LC, Sather H, Hutchinson RJ et al. Comparison of mercaptopurine (MP) with thioguanine (TG) and I/T methotrexate (ITM) with I/T “triples” (ITT) in children with standard-risk ALL: results CCG – 1952. Blood. 2002; 100:156a

    Google Scholar 

  90. Vora A, Mitchell CD, Lennard L et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukemia: a randomised trial. Lancet. 2006; 368:1339–1348.

    Article  PubMed  CAS  Google Scholar 

  91. Harms DO, Gobel U, Spaar HJ et al. Thioguanine offers no advantage of mercaptopurine in maintenance treatment of childhood ALL: results of randomised trial COALL-92. Blood. 2003; 102:2736–2740.

    Article  PubMed  CAS  Google Scholar 

  92. ALL Collaborative Group. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukemia: overview of 42 trials involving 12,000 randomised children. Lancet. 1996; 346:1783–1788.

    Google Scholar 

  93. Conter V, Valsecchi MG, Silvestri D et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukemia: a multicentre randomised trial. Lancet. 2007; 369:123–131.

    Article  PubMed  CAS  Google Scholar 

  94. Clarke M, Gaynon P, Hann I et al. CNS-directed therapy for childhood acute lymphoblastic leukemia: childhood ALL Collaborative Group overview of 43 randomised trials. J Clin Oncol. 2003; 21:1798–1809.

    Article  PubMed  CAS  Google Scholar 

  95. Gajjar A, Harison PL, Sandlund JT et al. Traumatic lumbar puncture at diagnosis adversely effects outcome in childhood acute lymphoblastic leukemia. Blood. 2000; 96:3381–3384.

    PubMed  CAS  Google Scholar 

  96. Te Loo DM, Kamps WA, Van der Does-van den Berg AV et al. Prognostic significance of blasts in the cerebrospinal fluid without pleocytosis or a traumatic lumbar puncture in children with acute lymphoblastic leukemia: the experience of the Dutch Childhood Oncology Group. J Clin Oncol. 2006; 24:2332–2336.

    Article  Google Scholar 

  97. Schrappe M, Reiter A, Zimmerman M et al. Long term results of four consecutive trials in childhood ALL performed by the ALL-BFM Study Group from 1981 – 1995. Leukemia. 2000; 14:2205–2222.

    Article  PubMed  CAS  Google Scholar 

  98. Matloub Y, Lindemulder S, Gaynon PS et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006; 108:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  99. Chessells JM, Hall E, Prentice HG et al. The impact of age on outcome in lymphoblastic leukemia; MRC UKALL X and Xa compared: a report from the MRC Paediatric and Adult Working Parties. Leukemia. 2004; 12:463–473.

    Article  Google Scholar 

  100. Nachman J, Sather HN, Buckley JD et al. Young adults 16 – 21 years of age at diagnosis entered on Children’s Cancer Group acute lymphoblastic leukemia and acute myeloblastic leukemia protocols. Cancer. 1993; 71:3377–3385.

    Article  PubMed  CAS  Google Scholar 

  101. Boissel N, Auclerc M-F, Lhėritier V et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALLE-93 and LALA-94 trials. J Clin Oncol. 2003; 21:774–780.

    Article  PubMed  Google Scholar 

  102. De Bont JM, Holt B, Dekker Am et al. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric versus adult protocols in the Netherlands. Leukemia. 2004; 18:2032–2035.

    Google Scholar 

  103. Ramanujachar R, Richards S, Hann I et al. Adolescents with acute lymphoblastic leukemia: outcome on UK National Paediatric (ALL97) and Adult (UKALL XII/ E2993) trials. Pediatric Blood and Cancer. 2007; 48:254–261.

    Article  PubMed  Google Scholar 

  104. Hallböök H, Gustafsson E, Smedmyr B et al. Treatment outcome in young adults and children > 10 years of age with acute lymphoblastic leukemia in Sweden: a comparison between a pediatric protocol and an adult protocol. Cancer. 2006; 107: 1551–1561.

    Article  PubMed  CAS  Google Scholar 

  105. Barry E, De Angelo DJ, Neuberg D et al. Favourable outcome for adolescents with acute lymphoblastic leukemia treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium protocols. J Clin Oncol. 2007; 25:813–819.

    Article  PubMed  CAS  Google Scholar 

  106. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukemia. Nat Rev Cancer. 2005; 5:172–183.

    Article  PubMed  CAS  Google Scholar 

  107. Pieters R, Schrappe M, De Lorenzo P et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukemia (Interfant-99): a observational study and a multicentre randomised trial. Lancet. 2007; 370:240–250.

    Article  PubMed  CAS  Google Scholar 

  108. Patte C, Auperin A, Michon J et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B cell lymphomas and L3 leukemia. Blood. 2001; 97:3370–3379.

    Article  PubMed  CAS  Google Scholar 

  109. Reiter A, Schrappe M, Ludwig WD et al. Intensive ALL-type therapy without local radiotherapy provides a 90% event free survival for children with T cell lymphoblastic lymphoma: a BFM group report. Blood. 2000; 95:416–421.

    PubMed  CAS  Google Scholar 

  110. Weng AP, Ferrando AL, Lee W et al. Activating mutations of NOTCH I in human T cell acute lymphoblastic leukemia. Science. 2004; 306:269–271.

    Article  PubMed  CAS  Google Scholar 

  111. Palomero T, Lim WK, Odom DT et al. Notch I directly regulates C-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci. 2006; 103:18261–18266.

    Article  PubMed  CAS  Google Scholar 

  112. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005; 23:6306–6315.

    Article  PubMed  CAS  Google Scholar 

  113. Wong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma-secretase inhibitor LY-411.575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Bio Chem. 2004; 279:12876–12882.

    Article  CAS  Google Scholar 

  114. Ballerini P, Landman-Parker J, Cayuela JM et al. Impact of genotype on survival of children with T cell acute lymphoblastic leukemia treated according to French protocol FRALL-93: the effect of TLX3/ HOX11L gene expression on outcome. Haematologica. 2008; 93(11): 1658–1668.

    Article  PubMed  Google Scholar 

  115. Rocha JCC, Cheng C, Lui W et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005; 105(12):4752–4758.

    Article  PubMed  CAS  Google Scholar 

  116. Eden T. Translation of cure for acute lymphoblastic leukemia to all children. Br J Haem. 2002; 118:945–951

    Article  Google Scholar 

  117. Eden T, Pui C-H, Schrappe M et al. All children have the right to full access to treatment for cancer. Lancet. 2004; 364:1121–1122.

    Google Scholar 

  118. Lugthart S, Cheok MH, den Boer ML et al. Identification of genes associated with chemotherapy cross resistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell. 2005; 7:375–386.

    Article  PubMed  CAS  Google Scholar 

  119. Asselin BL, Whitin JC, Coppola DJ. Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol. 1993; 11:1780–1786.

    Article  PubMed  CAS  Google Scholar 

  120. Avramis VI, Sense S, Periclou AP et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002; 99:1986–1994.

    Article  Google Scholar 

  121. Woo MH, Hak LJ, Storm MC et al. Anti-asparaginase antibodies following E. coli asparaginase therapy in pediatric acute lymphoblastic leukemia. Leukemia. 1998; 12:1527–1533.

    PubMed  CAS  Google Scholar 

  122. Hawkins DS, Park JR, Thomson BG et al. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated l-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res. 2004; 10:5335–5341.

    Article  PubMed  CAS  Google Scholar 

  123. Appel IM, Pinheiro JP, den Boer ML et al. Lack of asparagine depletion in the cerebrospinal fluid after one intravenous dose of PEG-asparaginase: a window study at initial diagnosis of childhood ALL. Leukemia. 2003; 17:2254–2256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Eden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this chapter

Cite this chapter

Eden, T. (2011). The Need for New Agents. In: Saha, V., Kearns, P. (eds) New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8459-3_1

Download citation

Publish with us

Policies and ethics