Skip to main content

MR T2 Relaxation Time Measurements for Cartilage and Menisci

  • Chapter
  • First Online:
Cartilage Imaging

Abstract

Magnetic Resonance Imaging (MRI) can be used not only for morphologic but also for quantitative assessment of knee cartilage. Quantitative T1rho and T2 relaxation time measurements and dGEMRIC (delayed Gadolinium enhanced MRI of the cartilage) have emerged as potential cartilage biomarkers to assess early degenerative disease. This chapter focuses on the T2-technique and clinical applications of hyaline cartilage and meniscal T2 relaxation time measurements in particular at the knee.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. The structure, biochemistry, and metabolism of osteoarthritic cartilage: a review of the literature. J Oral Maxillofac Surg. 1995;53(10):1182–92.

    Article  PubMed  CAS  Google Scholar 

  2. Dijkgraaf LC, de Bont LG, Boering G, Liem RS. Normal cartilage structure, biochemistry, and metabolism: a review of the literature. J Oral Maxillofac Surg. 1995;53(8):924–9.

    Article  PubMed  CAS  Google Scholar 

  3. Blumenkrantz G, Majumdar S. Quantitative magnetic resonance imaging of articular cartilage in osteoarthritis. Eur Cell Mater. 2007;13:76–86.

    PubMed  CAS  Google Scholar 

  4. Burstein D, Gray ML. Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis Cartilage. 2006;14(11):1087–90.

    Article  PubMed  CAS  Google Scholar 

  5. Burstein D. Tracking longitudinal changes in knee degeneration and repair. J Bone Joint Surg Am. 2009;91 Suppl 1:51–3.

    Article  PubMed  Google Scholar 

  6. Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB. Spatial variation of T2 in human articular cartilage. Radiology. 1997;205(2):546–50.

    PubMed  CAS  Google Scholar 

  7. Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2 – preliminary findings at 3 T. Radiology. 2000;214(1):259–66.

    PubMed  CAS  Google Scholar 

  8. Pai A, Li X, Majumdar S. A comparative study at 3 T of sequence dependence of T2 quantitation in the knee. Magn Reson Imaging. 2008;26(9):1215–20.

    Article  PubMed  Google Scholar 

  9. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16(12):1433–41.

    Article  PubMed  CAS  Google Scholar 

  10. Maier CF, Tan SG, Hariharan H, Potter HG. T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging. 2003;17(3):358–64.

    Article  PubMed  Google Scholar 

  11. Watanabe A, Boesch C, Obata T, Anderson SE. Effect of multislice acquisition on T1 and T2 measurements of articular cartilage at 3T. J Magn Reson Imaging. 2007;26(1):109–17.

    Article  PubMed  Google Scholar 

  12. Smith HE, Mosher TJ, Dardzinski BJ, Collins BG, Collins CM, Yang QX, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging. 2001;14(1):50–5.

    Article  PubMed  Google Scholar 

  13. Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB. MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol. 2001;177(3):665–9.

    PubMed  CAS  Google Scholar 

  14. Zarins ZA, Bolbos RI, Pialat JB, Link TM, Li X, Souza RB, Majumdar S. Cartilage and meniscus assessment using T1rho and T2 measurements in healthy subjects and patients with osteoarthritis. Osteoarthritis Cartilage. 2010;18(11):1408–16.

    Google Scholar 

  15. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.

    Article  PubMed  Google Scholar 

  16. Welsch GH, Mamisch TC, Hughes T, Zilkens C, Quirbach S, Scheffler K, et al. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol. 2008;43(9):619–26.

    Article  PubMed  Google Scholar 

  17. Rauscher I, Stahl R, Cheng J, Li X, Huber MB, Luke A, et al. Meniscal measurements of T1rho and T2 at MR imaging in healthy subjects and patients with osteoarthritis. Radiology. 2008;249(2):591–600.

    Article  PubMed  Google Scholar 

  18. Robson MD, Bydder GM. Clinical ultrashort echo time imaging of bone and other connective tissues. NMR Biomed. 2006;19(7):765–80.

    Article  PubMed  Google Scholar 

  19. Du J, Bydder M, Takahashi AM, Chung CB. Two-dimensional ultrashort echo time imaging using a spiral trajectory. Magn Reson Imaging. 2008;26(3):304–12.

    Article  PubMed  Google Scholar 

  20. Koff MF, Amrami KK, Felmlee JP, Kaufman KR. Bias of cartilage T2 values related to method of calculation. Magn Reson Imaging. 2008;26(9):1236–43.

    Article  PubMed  Google Scholar 

  21. Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C. T2 measurement in articular cartilage: impact of the fitting method on accuracy and precision at low SNR. Magn Reson Med. 2010;63(1):181–93.

    PubMed  Google Scholar 

  22. Eckstein F, Ateshian G, Burgkart R, Burstein D, Cicuttini F, Dardzinski B, et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage. 2006;14(10):974–83.

    Article  PubMed  CAS  Google Scholar 

  23. Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology. 2004;232(2):592–8.

    Article  PubMed  Google Scholar 

  24. Li X, Benjamin MC, Link TM, Castillo DD, Blumenkrantz G, Lozano J, et al. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage. 2007;15(7):789–97.

    Article  PubMed  CAS  Google Scholar 

  25. Stahl R, Luke A, Li X, Carballido-Gamio J, Ma CB, Majumdar S, et al. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients – a 3.0-Tesla MRI study. Eur Radiol. 2009;19(1):132–43.

    Article  PubMed  Google Scholar 

  26. Bolbos RI, Link TM, Ma CB, Majumdar S, Li X. T1rho relaxation time of the meniscus and its relationship with T1rho of adjacent cartilage in knees with acute ACL injuries at 3 T. Osteoarthritis Cartilage. 2009;17(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  27. Bae KT, Shim H, Tao C, Chang S, Wang JH, Boudreau R, et al. Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method. Osteoarthritis Cartilage. 2009;17(12):1589–97.

    Article  PubMed  CAS  Google Scholar 

  28. Carballido-Gamio J, Bauer J, Lee KY, Krause S, Majumdar S. Combined image processing techniques for characterization of MRI cartilage of the knee. Conf Proc IEEE Eng Med Biol Soc. 2005;3:3043–6.

    PubMed  Google Scholar 

  29. Duryea J, Neumann G, Brem MH, Koh W, Noorbakhsh F, Jackson RD, et al. Novel fast semi-automated software to segment cartilage for knee MR acquisitions. Osteoarthritis Cartilage. 2007;15(5):487–92.

    Article  PubMed  CAS  Google Scholar 

  30. Fripp J, Crozier S, Warfield SK, Ourselin S. Automatic segmentation of articular cartilage in magnetic resonance images of the knee. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):186–94.

    PubMed  Google Scholar 

  31. Carballido-Gamio J, Link TM, Majumdar S. New techniques for cartilage magnetic resonance imaging relaxation time analysis: texture analysis of flattened cartilage and localized intra- and inter-subject comparisons. Magn Reson Med. 2008;59(6):1472–7.

    Article  PubMed  Google Scholar 

  32. Carballido-Gamio J, Blumenkrantz G, Lynch JA, Link TM, Majumdar S. Longitudinal analysis of MRI T(2) knee cartilage laminar organization in a subset of patients from the osteoarthritis initiative. Magn Reson Med. 2010;63(2):465–72.

    Article  PubMed  Google Scholar 

  33. Carballido-Gamio J, Stahl R, Blumenkrantz G, Romero A, Majumdar S, Link TM. Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. Med Phys. 2009;36(9):4059–67.

    Article  PubMed  Google Scholar 

  34. Stehling C, Liebl H, Krug R, Lane NE, Nevitt MC, Lynch J, et al. Patellar cartilage: T2 values and morphologic abnormalities at 3.0-T MR imaging in relation to physical activity in asymptomatic subjects from the osteoarthritis initiative. Radiology. 2010;254(2):509–20.

    Article  PubMed  Google Scholar 

  35. Stehling C, Luke A, Stahl R, Baum T, Pan J, Link TM. Meniscal T1rho and T2 measured with 3.0T MRI increases after running a Marathon. [Oral Presentation at RSNA]. 2009. Chicago.

    Google Scholar 

  36. Stehling C, Müller-Höcker C, Schwaiger BJ, Lane NE, Krug R, Nevitt M, McCulloch CE, Lynch J, Link TM. Cartilage T2 and WORMS MR measurements predict changes in clinical parameters over a period of 2 years: Analysis of 217 non-symptomatic subjects from the Osteoarthritis Initiative. [Oral Presentation at ECR]. 2010. Vienna, Austria.

    Google Scholar 

  37. Stehling C, Schwaiger BJ, Müller-Höcker C, Kuo D, Lane NE, Lynch J, Nevitt M, McCulloch CE, Link TM. Changes of knee cartilage T2 under physical activity: 24-month follow-up analysis of 182 non-symptomatic subjects from the Osteoarthritis Initiative. [Oral Presentation at ECR]. 2010. Vienna, Austria.

    Google Scholar 

  38. Koff MF, Parratte S, Amrami KK, Kaufman KR. Examiner repeatability of patellar cartilage T2 values. Magn Reson Imaging. 2009;27(1):131–6.

    Article  PubMed  Google Scholar 

  39. Haralick R, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3(6):610–21.

    Article  Google Scholar 

  40. Blumenkrantz G, Stahl R, Carballido-Gamio J, Zhao S, Lu Y, Munoz T, et al. The feasibility of characterizing the spatial distribution of cartilage T(2) using texture analysis. Osteoarthritis Cartilage. 2008;16(5):584–90.

    Article  PubMed  CAS  Google Scholar 

  41. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, et al. Spatial distribution and relationship of T1rho and T2 relaxation times in knee cartilage with osteoarthritis. Magn Reson Med. 2009;61(6):1310–8.

    Article  PubMed  Google Scholar 

  42. Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5(4):262–70.

    Article  PubMed  CAS  Google Scholar 

  43. Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, et al. Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med. 2006;56(3):527–34.

    Article  PubMed  CAS  Google Scholar 

  44. Glaser C, Horng A, Mendlik T, Weckbach S, Hoffmann RT, Wagner S, et al. T2 relaxation time in patellar cartilage – global and regional reproducibility at 1.5 tesla and 3 tesla. Rofo. 2007;179(2):146–52.

    PubMed  CAS  Google Scholar 

  45. Trattnig S, Apprich S, Szomolanyi P, Mayerhoefer ME, Mamisch TC, Welsch GH. Detection of degenerative cartilage disease: Comparison of high resolution morphological MR and quantitative T2 mapping at 3.0 Tesla. [Oral Presentation ECR]. 2010. Vienna, Austria.

    Google Scholar 

  46. Nishii T, Kuroda K, Matsuoka Y, Sahara T, Yoshikawa H. Change in knee cartilage T2 in response to mechanical loading. J Magn Reson Imaging. 2008;28(1):175–80.

    Article  PubMed  Google Scholar 

  47. Yao W, Qu N, Lu Z, Yang S. The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skeletal Radiol. 2009;38(11):1055–62.

    Article  PubMed  Google Scholar 

  48. Friedrich KM, Shepard T, Chang G, Wang L, Babb JS, Schweitzer M, et al. Does joint alignment affect the T2 values of cartilage in patients with knee osteoarthritis? Eur Radiol. 2010;20(6):1532–8.

    Article  PubMed  Google Scholar 

  49. Friedrich KM, Shepard T, de Oliveira VS, Wang L, Babb JS, Schweitzer M, et al. T2 measurements of cartilage in osteoarthritis patients with meniscal tears. AJR Am J Roentgenol. 2009;193(5):W411–5.

    Article  PubMed  Google Scholar 

  50. Mosher TJ, Liu Y, Yang QX, Yao J, Smith R, Dardzinski BJ, et al. Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum. 2004;50(9):2820–8.

    Article  PubMed  Google Scholar 

  51. Mosher TJ, Collins CM, Smith HE, Moser LE, Sivarajah RT, Dardzinski BJ, et al. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging. 2004;19(3):323–8.

    Article  PubMed  Google Scholar 

  52. Luke AC, Stehling C, Stahl R, Li X, Kay T, Takemoto S, et al. High-field magnetic resonance imaging assessment of articular cartilage before and after marathon running: does long-distance running lead to cartilage damage? Am J Sports Med. 2010;38:2273–80.

    Article  PubMed  Google Scholar 

  53. Mosher TJ, Smith HE, Collins C, Liu Y, Hancy J, Dardzinski BJ, et al. Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology. 2005;234(1):245–9.

    Article  PubMed  Google Scholar 

  54. Mosher TJ, Liu Y, Torok CM. Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running. Osteoarthritis Cartilage. 2010;18(3):358–64.

    Article  PubMed  CAS  Google Scholar 

  55. Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(12):997–1005.

    Article  PubMed  Google Scholar 

  56. Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16(10):1150–9.

    Article  PubMed  CAS  Google Scholar 

  57. Bining HJ, Santos R, Andrews G, Forster BB. Can T2 relaxation values and color maps be used to detect chondral damage utilizing subchondral bone marrow edema as a marker? Skeletal Radiol. 2009;38(5):459–65.

    Article  PubMed  Google Scholar 

  58. Blumenkrantz G, Carballido-Gamio J, McCulloch CE, Lynch J, Link TM, Majumdar S. The relationship between the spatial distribution of cartilage MR T2 and longitudinal changes in pain: Data from the Osteoarthritis Initiative. [Poster ISMRM 2009]. 2009. Hawaii.

    Google Scholar 

  59. Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17(9):1219–27.

    Article  PubMed  CAS  Google Scholar 

  60. Welsch GH, Mamisch TC, Marlovits S, Glaser C, Friedrich K, Hennig FF, et al. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res. 2009;27(7):957–63.

    Article  PubMed  Google Scholar 

  61. Salzmann GM, Paul J, Bauer JS, Woertler K, Sauerschnig M, Landwehr S, et al. T2 assessment and clinical outcome following autologous matrix-assisted chondrocyte and osteochondral autograft transplantation. Osteoarthritis Cartilage. 2009;17(12):1576–82.

    Article  PubMed  CAS  Google Scholar 

  62. Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures – initial experience. Radiology. 2008;247(1):154–61.

    Article  PubMed  Google Scholar 

  63. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010;38(5):934–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baum, T., Link, T.M., Dardzinski, B.J. (2011). MR T2 Relaxation Time Measurements for Cartilage and Menisci. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics