Skip to main content

Hedgehog Signaling in Mammary Gland Development and Breast Cancer

  • Chapter
  • First Online:
Hedgehog signaling activation in human cancer and its clinical implications

Abstract

The Hedgehog signal transduction network is an essential regulator of metazoan embryonic development and functions in tissue homeostasis in the adult. In the mammary gland, this network mediates epithelial–stromal interactions regulating branching morphogenesis and histoarchitecture of mammary ducts, and may control alveolar differentiation. Inappropriate activation of the Hedgehog network is associated with a wide variety of cancers, including breast. Genetic evidence in mice, as well as molecular biological studies in human cells, demonstrated that activated signaling can lead to mammary hyperplasia and, in some cases, tumor formation. However, the mechanism(s) by which Hedgehog signaling regulates normal gland development, and exactly how activated Hedgehog signaling contributes to development or progression of breast cancer remain unclear. Because evidence of inappropriate activation of Hedgehog signaling is observed in some breast cancers, and network activity is associated with breast cancer cell self-renewal, the Hedgehog network has become a leading candidate for the development of targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    PubMed  CAS  Google Scholar 

  2. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of Hedgehog signaling. Curr Top Dev Biol 53:1–114

    PubMed  CAS  Google Scholar 

  3. Jia J, Jiang J (2006) Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 63:1249–1265

    PubMed  CAS  Google Scholar 

  4. Duncan AW et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    PubMed  CAS  Google Scholar 

  5. Dontu G et al (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    PubMed  CAS  Google Scholar 

  6. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432:324–331

    PubMed  CAS  Google Scholar 

  7. Handrigan GR, Richman JM (2009) Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Dev Biol 337:171–186. doi:S0012-1606(09)01279-2 [pii] 10.1016/j.ydbio.2009.10.020

    PubMed  Google Scholar 

  8. Singh RR et al (2010) Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 24:1025–1036. doi:leu201035 [pii] 10.1038/leu.2010.35

    PubMed  CAS  Google Scholar 

  9. Yang L et al (2008) Sonic Hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48:98–106. doi:S0168-8278(07)00528-4 [pii] 10.1016/j.jhep.2007.07.032

    PubMed  CAS  Google Scholar 

  10. Allen BL, Tenzen T, McMahon AP (2007) The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development. Genes Dev 21:1244–1257. doi:21/10/1244 [pii] 10.1101/gad.1543607

    PubMed  CAS  Google Scholar 

  11. Martinelli DC, Fan CM (2007) Gas1 extends the range of Hedgehog action by facilitating its signaling. Genes Dev 21:1231–1243. doi:21/10/1231 [pii] 10.1101/gad.1546307

    PubMed  CAS  Google Scholar 

  12. Tenzen T et al (2006) The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell 10:647–656. doi:S1534-5807(06)00165-1 [pii] 10.1016/j.devcel.2006.04.004

    PubMed  CAS  Google Scholar 

  13. Yao S, Lum L, Beachy P (2006) The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell 125:343–357. doi:S0092-8674(06)00378-3 [pii] 10.1016/j.cell.2006.02.040

    PubMed  CAS  Google Scholar 

  14. Hooper JE, Scott MP (2005) Communicating with Hedgehogs. Nat Rev Mol Cell Biol 6:306–317

    PubMed  CAS  Google Scholar 

  15. Varjosalo M, Taipale J (2007) Hedgehog signaling. J Cell Sci 120:3–6

    PubMed  CAS  Google Scholar 

  16. Riobo NA, Manning DR (2007) Pathways of signal transduction employed by vertebrate Hedgehogs. Biochem J 403:369–379

    PubMed  CAS  Google Scholar 

  17. Corbit KC et al (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021

    PubMed  CAS  Google Scholar 

  18. Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102:11325–11330

    PubMed  CAS  Google Scholar 

  19. Ray K et al (1999) Kinesin-II is required for axonal transport of choline acetyltransferase in Drosophila. J Cell Biol 147:507–518

    PubMed  CAS  Google Scholar 

  20. Han YG, Kwok BH, Kernan MJ (2003) Intraflagellar transport is required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol 13:1679–1686

    PubMed  CAS  Google Scholar 

  21. Avidor-Reiss T et al (2004) Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117:527–539

    PubMed  CAS  Google Scholar 

  22. Ocbina PJ, Anderson KV (2008) Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn 237:2030–2038. doi:10.1002/dvdy.21551

    PubMed  Google Scholar 

  23. Rohatgi R, Scott MP (2007) Patching the gaps in Hedgehog signalling. Nat Cell Biol 9:1005–1009

    PubMed  CAS  Google Scholar 

  24. Wong SY, Reiter JF (2008) The primary cilium at the crossroads of mammalian Hedgehog signaling. Curr Top Dev Biol 85:225–260. doi:S0070-2153(08)00809-0 [pii] 10.1016/S0070-2153(08)00809-0

    PubMed  CAS  Google Scholar 

  25. Johnson RL, Milenkovic L, Scott MP (2000) In vivo functions of the patched protein: requirement of the C terminus for target gene inactivation but not Hedgehog sequestration. Mol Cell 6:467–478

    PubMed  CAS  Google Scholar 

  26. Lewis MT (2001) Hedgehog signaling in mouse mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 6:53–66

    PubMed  CAS  Google Scholar 

  27. Guerrero I, Ruiz i Altaba A (2003) Development. Longing for ligand: Hedgehog, patched, and cell death. Science 301:774–776

    PubMed  CAS  Google Scholar 

  28. Lewis MT, Veltmaat JM (2004) Next stop, the twilight zone: Hedgehog network regulation of mammary gland development. J Mammary Gland Biol Neoplasia 9:165–181

    PubMed  Google Scholar 

  29. Thibert C et al (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic Hedgehog. Science 301:843–846

    PubMed  CAS  Google Scholar 

  30. Barnes EA, Kong M, Ollendorff V, Donoghue DJ (2001) Patched1 interacts with cyclin B1 to regulate cell cycle progression. EMBO J 20:2214–2223

    PubMed  CAS  Google Scholar 

  31. Adolphe C, Hetherington R, Ellis T, Wainwright B (2006) Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 66:2081–2088

    PubMed  CAS  Google Scholar 

  32. Chang H, Li Q, Moraes RC, Lewis MT, Hamel PA (2010) Activation of Erk by sonic Hedgehog independent of canonical Hedgehog signalling. Int J Biochem Cell Biol 42:1462–1471. doi:S1357-2725(10)00167-6 [pii] 10.1016/j.biocel.2010.04.016

    PubMed  CAS  Google Scholar 

  33. Malbon CC (2005) G proteins in development. Nat Rev Mol Cell Biol 6:689–701

    PubMed  CAS  Google Scholar 

  34. Hammerschmidt M, McMahon AP (1998) The effect of pertussis toxin on zebrafish development: a possible role for inhibitory G-proteins in Hedgehog signaling. Dev Biol 194:166–171

    PubMed  CAS  Google Scholar 

  35. Fremion F et al (1999) The heterotrimeric protein Go is required for the formation of heart epithelium in Drosophila. J Cell Biol 145:1063–1076

    PubMed  CAS  Google Scholar 

  36. DeCamp DL, Thompson TM, de Sauvage FJ, Lerner MR (2000) Smoothened activates Galphai-mediated signaling in frog melanophores. J Biol Chem 275:26322–26327

    PubMed  CAS  Google Scholar 

  37. Riobo NA, Saucy B, Dilizio C, Manning DR (2006) Activation of heterotrimeric G proteins by Smoothened. Proc Natl Acad Sci USA 103:12607–12612

    PubMed  CAS  Google Scholar 

  38. Kasai K et al (2004) The G12 family of heterotrimeric G proteins and Rho GTPase mediate Sonic Hedgehog signalling. Genes Cells 9:49–58

    PubMed  CAS  Google Scholar 

  39. Riobo NA, Lu K, Emerson CP Jr (2006) Hedgehog signal transduction: signal integration and cross talk in development and cancer. Cell Cycle 5:1612–1615. doi:3130 [pii]

    PubMed  CAS  Google Scholar 

  40. Yam PT, Langlois SD, Morin S, Charron F (2009) Sonic Hedgehog guides axons through a noncanonical Src-family-kinase-dependent signaling pathway. Neuron 62:349–362

    PubMed  CAS  Google Scholar 

  41. Chinchilla P, Xiao L, Kazanietz MG, Natalia AN, Riobo GM (2010) Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9:570–579. doi:10591 [pii]

    PubMed  CAS  Google Scholar 

  42. Chen W et al (2004) Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 306:2257–2260

    PubMed  CAS  Google Scholar 

  43. Meloni AR et al (2006) Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol Cell Biol 26:7550–7560

    PubMed  CAS  Google Scholar 

  44. Molnar C, Holguin H, Mayor F Jr, Ruiz-Gomez A, de Celis JF (2007) The G protein-coupled receptor regulatory kinase GPRK2 participates in Hedgehog signaling in Drosophila. Proc Natl Acad Sci USA 104:7963–7968

    PubMed  CAS  Google Scholar 

  45. Ogden SK et al (2008) G protein Galphai functions immediately downstream of Smoothened in Hedgehog signalling. Nature 456:967–970

    PubMed  CAS  Google Scholar 

  46. Nolan-Stevaux O et al (2009) GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 23:24–36

    PubMed  CAS  Google Scholar 

  47. Katoh Y, Katoh M (2009) Integrative genomic analyses on GLI1: positive regulation of GLI1 by Hedgehog-GLI, TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol 35:187–192

    PubMed  CAS  Google Scholar 

  48. Das S et al (2009) The Hedgehog pathway transcription factor, GLI1 promotes malignant behavior of cancer cells by upregulating osteopontin. J Biol Chem 284:22888–22897

    PubMed  CAS  Google Scholar 

  49. Wang C, Ruther U, Wang B (2007) The Shh-independent activator function of the full-length Gli3 protein and its role in vertebrate limb digit patterning. Dev Biol 305:460–469

    PubMed  CAS  Google Scholar 

  50. Russo J, Russo IH (2004) Development of the human breast. Maturitas 49:2–15. doi:10.1016/j.maturitas.2004.04.011 S0378-5122(04)00204-X [pii]

    PubMed  CAS  Google Scholar 

  51. Master SR et al (2002) Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol Endocrinol 16:1185–1203

    PubMed  CAS  Google Scholar 

  52. Watson CJ, Khaled WT (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003

    PubMed  CAS  Google Scholar 

  53. Lewis MT et al (1999) Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development 126:5181–5193

    PubMed  CAS  Google Scholar 

  54. Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404–3412

    PubMed  CAS  Google Scholar 

  55. Lewis MT et al (2001) The Gli2 transcription factor is required for normal mouse mammary gland development. Dev Biol 238:133–144. doi:10.1006/dbio.2001.0410 S0012160601904105 [pii]

    PubMed  CAS  Google Scholar 

  56. Gallego MI, Beachy PA, Hennighausen L, Robinson GW (2002) Differential requirements for shh in mammary tissue and hair follicle morphogenesis. Dev Biol 249:131–139

    PubMed  CAS  Google Scholar 

  57. Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA (2003) Shh expression is required for embryonic hair follicle but not mammary gland development. Dev Biol 264:153–165

    PubMed  CAS  Google Scholar 

  58. Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by Desert Hedgehog regulates the male germline. Curr Biol 6:298–304. doi:S0960-9822(02)00480-3 [pii]

    PubMed  CAS  Google Scholar 

  59. Li N et al (2008) Reciprocal intraepithelial interactions between TP63 and Hedgehog signaling regulate quiescence and activation of progenitor elaboration by mammary stem cells. Stem Cells 26:1253–1264. doi:2007-0691 [pii] 10.1634/stemcells.2007-0691

    PubMed  CAS  Google Scholar 

  60. Moraes RC et al (2009) Ptch1 is required locally for mammary gland morphogenesis and systemically for ductal elongation. Development 136:1423–1432. doi:dev.023994 [pii] 10.1242/dev.023994

    PubMed  CAS  Google Scholar 

  61. Moraes RC et al (2007) Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development 134:1231–1242

    PubMed  CAS  Google Scholar 

  62. Liu S et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071

    PubMed  CAS  Google Scholar 

  63. Tanaka H et al (2009) The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24−/low subpopulation and the side population of breast cancer cells. Anticancer Res 29:2147–2157. doi:29/6/2147 [pii]

    PubMed  CAS  Google Scholar 

  64. Boulanger CA, Wagner KU, Smith GH (2005) Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene 24:552–560

    PubMed  CAS  Google Scholar 

  65. Matulka LA, Triplett AA, Wagner KU (2007) Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev Biol 303:29–44. doi:S0012-1606(06)01435-7 [pii] 10.1016/j.ydbio.2006.12.017

    PubMed  CAS  Google Scholar 

  66. Nieuwenhuis E et al (2006) Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol 26:6609–6622. doi:26/17/6609 [pii] 10.1128/MCB.00295-06

    PubMed  CAS  Google Scholar 

  67. Hatsell SJ, Cowin P (2006) Gli3-mediated repression of Hedgehog targets is required for normal mammary development. Development 133:3661–3670

    PubMed  CAS  Google Scholar 

  68. Fiaschi M, Rozell B, Bergstrom A, Toftgard R, Kleman MI (2007) Targeted expression of GLI1 in the mammary gland disrupts pregnancy-induced maturation and causes lactation failure. J Biol Chem 282:36090–36101. doi:M704280200 [pii] 10.1074/jbc.M704280200

    PubMed  CAS  Google Scholar 

  69. Veltmaat JM et al (2006) Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes. Development 133:2325–2335

    PubMed  CAS  Google Scholar 

  70. McDermott KM, Liu BY, Tlsty TD, Pazour GJ (2010) Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol 20:731–737. doi:S0960-9822(10)00236-8 [pii] 10.1016/j.cub.2010.02.048

    CAS  Google Scholar 

  71. Concordet JP et al (1996) Spatial regulation of a zebrafish patched homologue reflects the roles of sonic Hedgehog and protein kinase A in neural tube and somite patterning. Development 122:2835–2846

    PubMed  CAS  Google Scholar 

  72. Levanat S et al (1996) A two-hit model for developmental defects in Gorlin syndrome. Nat Genet 12:85–87. doi:10.1038/ng0196-85

    PubMed  CAS  Google Scholar 

  73. Teglund S, Toftgard R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805:181–208. doi:S0304-419X(10)00006-5 [pii] 10.1016/j.bbcan.2010.01.003

    PubMed  CAS  Google Scholar 

  74. O’Toole SA, Swarbrick A, Sutherland RL (2009) The Hedgehog signalling pathway as a therapeutic target in early breast cancer development. Expert Opin Ther Targets 13:1095–1103

    PubMed  Google Scholar 

  75. Kasper M, Jaks V, Fiaschi M, Toftgard R (2009) Hedgehog signalling in breast cancer. Carcinogenesis 30:903–911

    PubMed  CAS  Google Scholar 

  76. Xie J et al (1997) Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 57:2369–2372

    PubMed  CAS  Google Scholar 

  77. Wicking C et al (1998) No evidence for the H133Y mutation in SONIC HEDGEHOG in a collection of common tumour types. Oncogene 16:1091–1093. doi:10.1038/sj.onc.1201644

    PubMed  CAS  Google Scholar 

  78. Vorechovsky I, Benediktsson KP, Toftgard R (1999) The patched/Hedgehog/smoothened signalling pathway in human breast cancer: no evidence for H133Y SHH PTCH and SMO mutations. Eur J Cancer 35:711–713

    PubMed  CAS  Google Scholar 

  79. Sjoblom T et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  80. Naylor TL et al (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:R1186–R1198

    PubMed  CAS  Google Scholar 

  81. Nessling M et al (2005) Candidate genes in breast cancer revealed by microarray-based comparative genomic hybridization of archived tissue. Cancer Res 65:439–447. doi:65/2/439 [pii]

    PubMed  CAS  Google Scholar 

  82. Kubo M et al (2004) Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 64:6071–6074

    PubMed  CAS  Google Scholar 

  83. Mukherjee S et al (2006) Hedgehog signaling and response to cyclopamine differ in epithelial and stromal cells in benign breast and breast cancer. Cancer Biol Ther 5:674–683

    PubMed  CAS  Google Scholar 

  84. Xuan Y, Lin Z (2009) Expression of Indian Hedgehog signaling molecules in breast cancer. J Cancer Res Clin Oncol 135:235–240

    PubMed  CAS  Google Scholar 

  85. Xu L et al (2009) Gli1 promotes cell survival and is predictive of a poor outcome in ERalpha-negative breast cancer. Breast Cancer Res Treat 123:59–71. doi:10.1007/s10549-009-0617-5

    PubMed  Google Scholar 

  86. ten Haaf A et al (2009) Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 9:298. doi:1471-2407-9-298 [pii] 10.1186/1471-2407-9-298

    PubMed  Google Scholar 

  87. Wolf I et al (2007) Unmasking of epigenetically silenced genes reveals DNA promoter methylation and reduced expression of PTCH in breast cancer. Breast Cancer Res Treat 105:139–155. doi:10.1007/s10549-006-9440-4

    PubMed  CAS  Google Scholar 

  88. Abe Y et al (2008) Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 105:4838–4843. doi:0712216105 [pii] 10.1073/pnas.0712216105

    PubMed  CAS  Google Scholar 

  89. Sterling JA et al (2006) The Hedgehog signaling molecule Gli2 induces parathyroid hormone-related peptide expression and osteolysis in metastatic human breast cancer cells. Cancer Res 66:7548–7553. doi:66/15/7548 [pii] 10.1158/0008-5472.CAN-06-0452

    PubMed  CAS  Google Scholar 

  90. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    PubMed  CAS  Google Scholar 

  91. Fiaschi M, Rozell B, Bergstrom A, Toftgard R (2009) Development of mammary tumors by conditional expression of GLI1. Cancer Res 69:4810–4817. doi:0008-5472.CAN-08-3938 [pii] 10.1158/0008-5472.CAN-08-3938

    PubMed  CAS  Google Scholar 

  92. Peukert S, Miller-Moslin K (2010) Small-molecule inhibitors of the Hedgehog signaling pathway as cancer therapeutics. ChemMedChem 5:500–512. doi:10.1002/cmdc.201000011

    PubMed  CAS  Google Scholar 

  93. Keeler RF (1970) Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine. Teratology 3:175–180

    PubMed  CAS  Google Scholar 

  94. Keeler RF (1975) Teratogenic effects of cyclopamine and jervine in rats, mice and hamsters. Proc Soc Exp Biol Med 149:302–306

    PubMed  CAS  Google Scholar 

  95. Dunn MK, Mercola M, Moore DD (1995) Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus. Dev Dyn 202:255–270

    PubMed  CAS  Google Scholar 

  96. Incardona JP, Gaffield W, Kapur RP, Roelink H (1998) The teratogenic Veratrum alkaloid cyclopamine inhibits sonic Hedgehog signal transduction. Development 125:3553–3562

    PubMed  CAS  Google Scholar 

  97. Cooper MK, Porter JA, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:1603–1607

    PubMed  CAS  Google Scholar 

  98. Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748

    PubMed  CAS  Google Scholar 

  99. Kim J et al (2010) Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17:388–399. doi:S1535-6108(10)00070-X [pii] 10.1016/j.ccr.2010.02.027

    PubMed  CAS  Google Scholar 

  100. Zhang X et al (2009) Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res Treat 115:505–521. doi:10.1007/s10549-008-0093-3

    PubMed  CAS  Google Scholar 

  101. Feldmann G et al (2008) An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol Cancer Ther 7:2725–2735

    PubMed  CAS  Google Scholar 

  102. Sasai K et al (2007) Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res 67:3871–3877. doi:0008-5472.CAN-07-0493 [pii] 10.1158/0008-5472.CAN-07-0493

    PubMed  CAS  Google Scholar 

  103. Von Hoff DD et al (2009) Inhibition of the Hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 361:1164–1172. doi:NEJMoa0905360 [pii] 10.1056/NEJMoa0905360

    Google Scholar 

  104. Rudin CM et al (2009) Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC-0449. N Engl J Med 361:1173–1178. doi:NEJMoa0902903 [pii] 10.1056/NEJMoa0902903

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Visbal, A.P., Lewis, M.T. (2011). Hedgehog Signaling in Mammary Gland Development and Breast Cancer. In: Xie, J. (eds) Hedgehog signaling activation in human cancer and its clinical implications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8435-7_9

Download citation

Publish with us

Policies and ethics