Skip to main content

Liposomes and Polymers in Folate-Targeted Cancer Therapeutics

  • Chapter
  • First Online:
Targeted Drug Strategies for Cancer and Inflammation

Abstract

In this chapter, we will address the therapeutic potential of targeting liposomes and polymers to the folate receptor for delivery of anticancer drugs and review the experimental data in this field. By exploiting the pharmacologic attributes of liposomes and polymers together with their cellular internalization by folate receptor-mediated endocytosis, these systems should allow for improved selectivity and control of drug delivery to folate receptor expressing cancers. Particularly, extension of circulation time and enhanced deposition in tumors coupled with reduced toxicity of liposome- and polymer-associated drugs are important assets of the nanomedicine platform when compared to free drugs or low-molecular weight conjugates. In addition, the high drug:ligand ratio of liposomes and some polymers enable the delivery of a high drug payload per ligand–receptor interaction. However these systems have also some in vivo limitations that will be discussed. It remains unclear whether folate-targeted nanomedicines can provide a significant added value in clinical applications vis-à-vis folate-targeted drug conjugates.

The online version of the original chapter can be found at http://dx.doi.org/10.1007/978-1-4419-8417-3_11

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4419-8417-3_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Stealth is a registered trademark of Alza Corp., Mountain View, CA.

  2. 2.

     Actively targeted carriers may also be referred to simply as targeted carriers.

  3. 3.

     Formulation with 0.5% ligand-to-phospholipid molar ratio.

References

  • Abra RM, Bankert RB, Chen F et al (2002) The next generation of liposome delivery systems: recent experience with tumor-targeted, sterically-stabilized immunoliposomes and active-loading gradients. J Liposome Res 12:1–3

    Article  PubMed  CAS  Google Scholar 

  • Agarwal A, Saraf S, Asthana A, Gupta U, Gajbhiya V, Jain NK (2008) Ligand based dendritic systems for tumor targeting. Int J Pharm 350:3–13

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Sapra P, Moase E (2002) Use of the post-insertion method for the formation of ligand-coupled liposomes. Cell Mol Biol Lett 7:889–894

    PubMed  CAS  Google Scholar 

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 18:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Article  PubMed  CAS  Google Scholar 

  • Brown Jones M, Neuper C, Clayton A et al (2008) Rationale for folate receptor alpha targeted therapy in “high risk” endometrial carcinomas. Int J Cancer 123:1699–703

    Article  PubMed  Google Scholar 

  • Cavallaro G, Mariano L, Salmaso S, Caliceti P, Gaetano G (2006) Folate-mediated targeting of polymeric conjugates of gemcitabine. Int J Pharm 307:258–269

    Article  PubMed  CAS  Google Scholar 

  • Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98:335–344

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  PubMed  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Ringsdorf H, Satchi-Fainaro R (2006) Polymer therapeutics – polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. J Drug Target 14:337–341

    Article  PubMed  CAS  Google Scholar 

  • Gabizon AA (2001) Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 7:223–225

    PubMed  CAS  Google Scholar 

  • Gabizon A, Martin F (1997) Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 54(Suppl 4):15–21

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1103:94–100

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344

    Article  CAS  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D et al (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S (2003a) In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res 9:6551–6559

    PubMed  CAS  Google Scholar 

  • Gabizon A, Shmeeda H, Barenholz Y (2003b) Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–436

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S (2004) Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev 56:1177–1192

    Article  PubMed  CAS  Google Scholar 

  • Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16:175–183

    Article  PubMed  CAS  Google Scholar 

  • Gabizon A, Tzemach D, Gorin J (2009) et al. Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models, Cancer Chemother Pharmacol

    Google Scholar 

  • Gabizon, A., Tzemach, D., Gorin, J., Mak, L., Amitay, Y., Shmeeda, H., and Zalipsky, S. (2010). Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemother Pharmacol 66, 43–52.

    Google Scholar 

  • Gaspar R, Duncan R (2009) Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. Adv Drug Deliv Rev 61:1220–1231

    Article  PubMed  CAS  Google Scholar 

  • Ghaghada KB, Saul J, Natarajan JV, Bellamkonda RV, Annapragada AV (2005) Folate targeting of drug carriers: a mathematical model. J Control Release 104:113–128

    Article  PubMed  CAS  Google Scholar 

  • Godwin A, Bolina K, Clochard M et al (2001) New strategies for polymer development in pharmaceutical science – a short review. J Pharm Pharmacol 53:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Goren D, Horowitz AT, Zalipsky S, Woodle MC, Yarden Y, Gabizon A (1996) Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies. Br J Cancer 74:1749–1756

    Article  PubMed  CAS  Google Scholar 

  • Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A (2000) Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin Cancer Res 6:1949–1957

    PubMed  CAS  Google Scholar 

  • Green JR (2004) Bisphosphonates: preclinical review. Oncologist 9(Suppl 4):3–13

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Ryman BE (1971) Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J 124:58P

    PubMed  CAS  Google Scholar 

  • Gupta Y, Jain A, Jain P, Jain SK (2007) Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J Drug Target 15:231–240

    Article  PubMed  CAS  Google Scholar 

  • Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45:1198–1215

    Article  PubMed  CAS  Google Scholar 

  • Hartmann LC, Keeney GL, Lingle WL et al (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121:938–942

    Article  PubMed  CAS  Google Scholar 

  • Heath TD (2005) Methodology and experimental design for the study of liposome-dependent drugs. Methods Enzymol 391:186–199

    Article  PubMed  CAS  Google Scholar 

  • Huang SK, Lee KD, Hong K, Friend DS, Papahadjopoulos D (1992) Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 52:5135–5143

    PubMed  CAS  Google Scholar 

  • Hwang KJ, Luk KF, Beaumier PL (1980) Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: a kinetic study. Proc Natl Acad Sci USA 77:4030–4034

    Article  PubMed  CAS  Google Scholar 

  • Kalli KR, Oberg AL, Keeney GL et al (2008) Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 108:619–626

    Article  PubMed  CAS  Google Scholar 

  • Kirpotin DB, Drummond DC, Shao Y et al (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740

    Article  PubMed  CAS  Google Scholar 

  • Kovar M, Kovar L, Subr V et al (2004) HPMA copolymers containing doxorubicin bound by a proteolytically or hydrolytically cleavable bond: comparison of biological properties in vitro. J Control Release 99:301–314

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP (2008) Folate-targeted drug strategies for the treatment of cancer. Curr Opin Investig Drugs 9:1277–1286

    PubMed  CAS  Google Scholar 

  • Leamon CP, Cooper SR, Hardee GE (2003) Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo. Bioconjug Chem 14:738–747

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Reddy JA, Vetzel M et al (2008) Folate targeting enables durable and specific antitumor responses from a therapeutically null tubulysin B analogue. Cancer Res 68:9839–9844

    Article  PubMed  CAS  Google Scholar 

  • Lee RJ, Low PS (1994) Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 269:3198–3204

    PubMed  CAS  Google Scholar 

  • Licciardi M, Craparo EF, Giammona G, Armes SP, Tang Y, Lewis AL (2008) in vitro biological evaluation of folate-functionalized block copolymer micelles for selective anti-cancer drug delivery. Macromol Biosci 8:615–626

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Wu J, Gonit M et al (2007) Role of formulation composition in folate receptor-targeted liposomal doxorubicin delivery to acute myelogenous leukemia cells. Mol Pharm 4:707–712

    Article  PubMed  CAS  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  PubMed  CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  • Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R (2009) Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem Int Ed Engl 48:2949–2954

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Lee RJ (2004) Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin Drug Deliv 1:7–17

    Article  PubMed  CAS  Google Scholar 

  • Pan XQ, Lee RJ (2005) In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer Res 25:343–346

    PubMed  CAS  Google Scholar 

  • Pan XQ, Wang H, Lee RJ (2002a) Boron delivery to a murine lung carcinoma using folate receptor-targeted liposomes. Anticancer Res 22:1629–1633

    PubMed  CAS  Google Scholar 

  • Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ (2002b) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100:594–602

    Article  PubMed  CAS  Google Scholar 

  • Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20:417–422

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Gabizon A (1995) Stealth liposomes as tools for drug delivery. In: Philipot J, Schuber F (eds) Liposomes as tools in basic research and industry. CRC Press, Boca Raton, pp 177–188

    Google Scholar 

  • Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    Article  PubMed  CAS  Google Scholar 

  • Pastorino F, Di Paolo D, Piccardi F et al (2008) Enhanced antitumor efficacy of clinical-grade vasculature-targeted liposomal doxorubicin. Clin Cancer Res 14:7320–7329

    Article  PubMed  CAS  Google Scholar 

  • Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O (2008) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 127:239–248

    Article  PubMed  CAS  Google Scholar 

  • Patri AK, Kukowska-Latallo JF, Baker JR Jr (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57:2203–2214

    Article  PubMed  CAS  Google Scholar 

  • Paulos CM, Reddy JA, Leamon CP, Turk MJ, Low PS (2004) Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol Pharmacol 66:1406–1414

    Article  PubMed  CAS  Google Scholar 

  • Pinhassi RI, Assaraf YG, Farber S et al (2010) Arabinogalactan-folic acid-drug conjugate for targeted delivery and target-activated release of anticancer drugs to folate receptor-overexpressing cells. Biomacromolecules 11:294–303

    Article  PubMed  CAS  Google Scholar 

  • Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials 30:3009–3019

    Article  PubMed  CAS  Google Scholar 

  • Puig-Kroger A, Sierra-Filardi E, Dominguez-Soto A et al (2009) Folate receptor beta is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res 69:9395–9403

    Article  PubMed  Google Scholar 

  • Reddy JA, Abburi C, Hofland H et al (2002) Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9:1542–1550

    Article  PubMed  CAS  Google Scholar 

  • Sapra P, Tyagi P, Allen TM (2005) Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2:369–381

    Article  PubMed  CAS  Google Scholar 

  • Satchi-Fainaro R, Puder M, Davies JW et al (2004) Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat Med 10:255–261

    Article  PubMed  CAS  Google Scholar 

  • Satchi-Fainaro R, Mamluk R, Wang L et al (2005) Inhibition of vessel permeability by TNP-470 and its polymer conjugate, caplostatin. Cancer Cell 7:251–261

    Article  PubMed  CAS  Google Scholar 

  • Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV (2003) Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release 92:49–67

    Article  PubMed  CAS  Google Scholar 

  • Scomparin A, Salmaso S, Caliceti P, Satchi-Fainaro R. Folate-mediated targeting of polymeric conjugates of doxorubicin. The Cancer Biology Research Center of Tel Aviv University; 2009 May 7-9; Ma’alot, Israel; 2009.

    Google Scholar 

  • Scomparin, A., Salmaso, S., Bersani, S., Satchi-Fainaro, R., and Caliceti, P. (2011). Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 42, 547–558.

    Google Scholar 

  • Segal E, Pan H, Ofek P et al (2009) Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics. PLoS One 4:e5233

    Article  PubMed  Google Scholar 

  • Senior J, Gregoriadis G (1982) Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci 30:2123–2136

    Article  PubMed  CAS  Google Scholar 

  • Seymour LW, Ferry DR, Kerr DJ et al (2009) Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol 34:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A (2006) Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 5:818–824

    Article  PubMed  CAS  Google Scholar 

  • Shmeeda H, Amitay Y, Gorin J, et al. Delivery of zoledronic acid encapsulated in folate-targeted liposomes results in potent in vitro cytotoxic activity on tumor cells. J Control Release 2010;submitted for publication.

    Google Scholar 

  • Shmeeda, H., Amitay, Y., Gorin, J., Tzemach, D., Mak, L., Ogorka, J., Kumar, S., Zhang, J. A., and Gabizon, A. (2010). Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release 146, 76–83.

    Google Scholar 

  • Solomon R, Gabizon AA (2008) Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. Clin Lymphoma Myeloma 8:21–32

    Article  CAS  Google Scholar 

  • Stephenson SM, Yang W, Stevens PJ, Tjarks W, Barth RF, Lee RJ (2003) Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 23:3341–3345

    PubMed  CAS  Google Scholar 

  • Stephenson SM, Low PS, Lee RJ (2004) Folate receptor-mediated targeting of liposomal drugs to cancer cells. Methods Enzymol 387:33–50

    Article  PubMed  CAS  Google Scholar 

  • Stevens PJ, Sekido M, Lee RJ (2004) A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res 21:2153–2157

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Chen L, Yu J et al (2009) Folate-bearing doxorubicin-loaded magnetic poly(N-isopropylacrylamide) microspheres as a new strategy for cancer therapy. Anticancer Drugs 20:607–615

    Article  PubMed  CAS  Google Scholar 

  • Thomas TP, Majoros IJ, Kotlyar A et al (2005) Targeting and inhibition of cell growth by an engineered dendritic nanodevice. J Med Chem 48:3729–3735

    Article  PubMed  CAS  Google Scholar 

  • Torchilin V (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5:1003–1025

    Article  PubMed  CAS  Google Scholar 

  • Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213:165–172

    Article  PubMed  CAS  Google Scholar 

  • Uster PS, Allen TM, Daniel BE, Mendez CJ, Newman MS, Zhu GZ (1996) Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 386:243–246

    Article  PubMed  CAS  Google Scholar 

  • Vicent MJ, Ringsdorf H, Duncan R (2009) Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 61:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73

    Article  PubMed  CAS  Google Scholar 

  • Wollack JB, Makori B, Ahlawat S et al (2008) Characterization of folate uptake by choroid plexus epithelial cells in a rat primary culture model. J Neurochem 104:1494–1503

    Article  PubMed  CAS  Google Scholar 

  • Woodle MC, Lasic DD (1992) Sterically stabilized liposomes. Biochim Biophys Acta 1113:171–199

    PubMed  CAS  Google Scholar 

  • Xiang G, Wu J, Lu Y, Liu Z, Lee RJ (2008) Synthesis and evaluation of a novel ligand for folate-mediated targeting liposomes. Int J Pharm 356:29–36

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Chen H, Vlahov IR, Cheng JX, Low PS (2007) Characterization of the pH of folate receptor-containing endosomes and the rate of hydrolysis of internalized acid-labile folate-drug conjugates. J Pharmacol Exp Ther 321:462–468

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S (2010) Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjug Chem 21:496–504

    Article  CAS  Google Scholar 

  • Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–3356

    PubMed  CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    PubMed  CAS  Google Scholar 

  • Zhai G, Wu J, Xiang G et al (2009) Preparation, characterization and pharmacokinetics of folate receptor-targeted liposomes for docetaxel delivery. J Nanosci Nanotechnol 9:2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5:309–319

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gabizon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gabizon, A., Shmeeda, H., Baabur-Cohen, H., Satchi-Fainaro, R. (2011). Liposomes and Polymers in Folate-Targeted Cancer Therapeutics. In: Jackman, A., Leamon, C. (eds) Targeted Drug Strategies for Cancer and Inflammation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8417-3_11

Download citation

Publish with us

Policies and ethics