Skip to main content

Gene Electrotransfer to Skin

  • Chapter
  • First Online:
Clinical Aspects of Electroporation

Abstract

Gene electrotransfer to skin is achieving increasing interest and is likely to gain considerable clinical application due to the ease with which it is performed and the safety of the procedure. There is a potential use of gene electrotransfer to skin in e.g., DNA vaccinations, local production of therapeutic molecules as well as production of molecules for systemic therapy. More than 30 preclinical studies concerning gene electrotransfer to skin have been reported in the literature and this chapter aims at creating an overview of plasmids injected, electrical parameters used, and duration and level of transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Titomirov AV, Sukharev S, Kistanova E. In vivo electroporation and stable transformation of skin cells of newborn mice by plasmid DNA. Biochim Biophys Acta. 1991;1088(1):131–4.

    CAS  PubMed  Google Scholar 

  2. Thanaketpaisarn O, Nishikawa M, Yamashita F, Hashida M. Tissue-specific characteristics of in vivo electric gene: transfer by tissue and intravenous injection of plasmid DNA. Pharm Res. 2005;22(6):883–91.

    Article  CAS  PubMed  Google Scholar 

  3. Gothelf A, Mahmood F, Dagnaes-Hansen F, Gehl J. Importance of electrode choice on gene electrotransfer to skin; evaluated by efficacy of transgene expression and electric field calculation in a porcine model. Manuscript submitted for publication 2011.

    Google Scholar 

  4. Dujardin N, Van Der SP, Preat V. Topical gene transfer into rat skin using electroporation. Pharm Res. 2001;18(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  5. Vandermeulen G, Daugimont L, Richiardi H, Vanderhaeghen ML, Lecouturier N, Ucakar B, et al. Effect of tape stripping and adjuvants on immune response after intradermal DNA electroporation. Pharm Res. 2009;26(7):1745–51.

    Article  CAS  PubMed  Google Scholar 

  6. Christensen R, Kolvraa S, Blaese RM, Jensen TG. Development of a skin-based metabolic sink for phenylalanine by overexpression of phenylalanine hydroxylase and GTP cyclohydrolase in primary human keratinocytes. Gene Ther. 2000;7(23):1971–8.

    Article  CAS  PubMed  Google Scholar 

  7. Glasspool-Malone J, Somiari S, Drabick JJ, Malone RW. Efficient nonviral cutaneous transfection. Mol Ther. 2000;2(2):140–6.

    Article  CAS  PubMed  Google Scholar 

  8. Drabick JJ, Glasspool-Malone J, King A, Malone RW. Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol Ther. 2001;3(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  9. Babiuk S, Baca-Estrada ME, Foldvari M, Baizer L, Stout R, Storms M, et al. Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol Ther. 2003;8(6):992–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hirao LA, Wu L, Khan AS, Satishchandran A, Draghia-Akli R, Weiner DB. Intradermal/subcutaneous immunization by electroporation improves plasmid vaccine delivery and potency in pigs and rhesus macaques. Vaccine. 2008;26(3):440–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang L, Li L, Hoffmann GA, Hoffman RM. Depth-targeted efficient gene delivery and expression in the skin by pulsed electric fields: an approach to gene therapy of skin aging and other diseases. Biochem Biophys Res Commun. 1996;220(3):633–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chesnoy S, Huang L. Enhanced cutaneous gene delivery following intradermal injection of naked DNA in a high ionic strength solution. Mol Ther. 2002;5(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  13. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol. 2008;26(36):5896–903.

    CAS  PubMed  Google Scholar 

  14. Heller LC, Jaroszeski MJ, Coppola D, McCray AN, Hickey J, Heller R. Optimization of cutaneous electrically mediated plasmid DNA delivery using novel electrode. Gene Ther. 2007;14(3):275–80.

    Article  CAS  PubMed  Google Scholar 

  15. Heller R, Schultz J, Lucas ML, Jaroszeski MJ, Heller LC, Gilbert RA, et al. Intradermal delivery of interleukin-12 plasmid DNA by in vivo electroporation. DNA Cell Biol. 2001;20(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  16. Pedron-Mazoyer S, Plouet J, Hellaudais L, Teissie J, Golzio M. New anti angiogenesis developments through electro-immunization: optimization by in vivo optical imaging of intradermal electro gene transfer. Biochim Biophys Acta. 2007;1770(1):137–42.

    CAS  PubMed  Google Scholar 

  17. Mazeres S, Sel D, Golzio M, Pucihar G, Tamzali Y, Miklavcic D, et al. Non invasive contact electrodes for in vivo localized cutaneous electropulsation and associated drug and nucleic acid delivery. J Control Release. 2009;134(2): 125–31.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Nolan E, Kreitschitz S, Rabussay DP. Enhanced delivery of naked DNA to the skin by non-invasive in vivo electroporation. Biochim Biophys Acta. 2002;1572(1):1–9.

    CAS  PubMed  Google Scholar 

  19. Maruyama H, Ataka K, Higuchi N, Sakamoto F, Gejyo F, Miyazaki J. Skin-targeted gene transfer using in vivo electroporation. Gene Ther. 2001;8(23):1808–12.

    Article  CAS  PubMed  Google Scholar 

  20. Pavselj N, Preat V. DNA electrotransfer into the skin using a combination of one high- and one low-voltage pulse. J Control Release. 2005;106(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  21. Kang JH, Toita R, Niidome T, Katayama Y. Effective delivery of DNA into tumor cells and tissues by electroporation of polymer-DNA complex. Cancer Lett. 2008;265(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  22. Andre FM, Gehl J, Sersa G, Preat V, Hojman P, Eriksen J, et al. Efficiency of high- and low-voltage pulse combinations for gene electrotransfer in muscle, liver, tumor, and skin. Human Gene Therapy. 2008;19(11):1261–72.

    Article  CAS  PubMed  Google Scholar 

  23. Vandermeulen G, Richiardi H, Escriou V, Ni J, Fournier P, Schirrmacher V, et al. Skin-specific promoters for genetic immunisation by DNA electroporation. Vaccine. 2009;27(32):4272–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gothelf A, Hojman P, Gehl J. Therapeutic levels of erythropoietin (EPO) achieved after gene electrotransfer to skin in mice. Gene Ther. 2010;17(9):1077–84.

    Article  CAS  PubMed  Google Scholar 

  25. Heller LC, Jaroszeski MJ, Coppola D, Heller R. Comparison of electrically mediated and liposome-complexed plasmid DNA delivery to the skin. Genet Vaccines Ther. 2008;6:16.

    Article  PubMed  Google Scholar 

  26. Medi BM, Hoselton S, Marepalli RB, Singh J. Skin targeted DNA vaccine delivery using electroporation in rabbits. I: efficacy. Int J Pharm. 2005;294(1–2):53–63.

    Article  CAS  PubMed  Google Scholar 

  27. Gothelf A, Eriksen J, Hojman P, Gehl J. Duration and level of transgene expression after gene electrotransfer to skin in mice. Gene Ther. 2010;17(7):839–45.

    Article  CAS  PubMed  Google Scholar 

  28. Lucas ML, Jaroszeski MJ, Gilbert R, Heller R. In vivo electroporation using an exponentially enhanced pulse: a new waveform. DNA Cell Biol. 2001;20(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ferraro B, Cruz YL, Coppola D, Heller R. Intradermal delivery of plasmid VEGF(165) by electroporation promotes wound healing. Mol Ther. 2009;17(4):651–7.

    Article  CAS  PubMed  Google Scholar 

  30. Marti G, Ferguson M, Wang J, Byrnes C, Dieb R, Qaiser R, et al. Electroporative ­transfection with KGF-1 DNA improves wound healing in a diabetic mouse model. Gene Ther. 2004;11(24):1780–5.

    Article  CAS  PubMed  Google Scholar 

  31. Lin MP, Marti GP, Dieb R, Wang J, Ferguson M, Qaiser R, et al. Delivery of plasmid DNA expression vector for keratinocyte growth factor-1 using electroporation to improve cutaneous wound healing in a septic rat model. Wound Repair Regen. 2006;14(5):618–24.

    Article  PubMed  Google Scholar 

  32. Lee PY, Chesnoy S, Huang L. Electroporatic delivery of TGF-beta1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J Invest Dermatol. 2004;123(4):791–8.

    Article  CAS  PubMed  Google Scholar 

  33. Liu L, Marti GP, Wei X, Zhang X, Zhang H, Liu YV, et al. Age-dependent impairment of HIF-1alpha expression in diabetic mice: correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol. 2008;217:319–27.

    Article  CAS  PubMed  Google Scholar 

  34. Roos AK, Moreno S, Leder C, Pavlenko M, King A, Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther. 2006;13(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  35. Roos AK, Eriksson F, Walters DC, Pisa P, King AD. Optimization of skin electroporation in mice to increase tolerability of DNA vaccine delivery to patients. Mol Ther. 2009;17(9):1637–42.

    Article  CAS  PubMed  Google Scholar 

  36. Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Preat V. Optimisation of intradermal DNA electrotransfer for immunisation. J Control Release. 2007;124(1–2):81–7.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Widera G, Rabussay D. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant. Bioelectrochemistry. 2004;63(1–2):369–73.

    Article  CAS  PubMed  Google Scholar 

  38. Dobano C, Widera G, Rabussay D, Doolan DL. Enhancement of antibody and cellular immune responses to malaria DNA vaccines by in vivo electroporation. Vaccine. 2007;25(36):6635–45.

    Article  CAS  PubMed  Google Scholar 

  39. Hooper JW, Golden JW, Ferro AM, King AD. Smallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge. Vaccine. 2007;25(10):1814–23.

    Article  CAS  PubMed  Google Scholar 

  40. Byrnes CK, Malone RW, Akhter N, Nass PH, Wetterwald A, Cecchini MG, et al. Electroporation enhances transfection efficiency in murine cutaneous wounds. Wound Repair Regen. 2004;12(4):397–403.

    Article  PubMed  Google Scholar 

  41. Nomura M, Nakata Y, Inoue T, Uzawa A, Itamura S, Nerome K, et al. In vivo induction of cytotoxic T lymphocytes specific for a single epitope introduced into an unrelated molecule. J Immunol Methods. 1996;193(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  42. Maruyama H, Miyazaki J, Gejyo F. Epidermis-targeted gene transfer using in vivo electroporation. Methods Mol Biol. 2005;289:431–6.

    PubMed  Google Scholar 

  43. Roos AK, King A, Pisa P. DNA vaccination for prostate cancer. Methods Mol Biol. 2008;423:463–72.

    Article  CAS  PubMed  Google Scholar 

  44. Marti GP, Mohebi P, Liu L, Wang J, Miyashita T, Harmon JW. KGF-1 for wound healing in animal models. Methods Mol Biol. 2008;423:383–91.

    Article  CAS  PubMed  Google Scholar 

  45. Medi BM, Singh J. Delivery of DNA into skin via electroporation. Methods Mol Biol. 2008;423:225–32.

    Article  CAS  PubMed  Google Scholar 

  46. Pavselj N, Preat V, Miklavcic D. A numerical model of skin electropermeabilization based on in vivo experiments. Ann Biomed Eng. 2007;35(12):2138–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Gothelf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gothelf, A., Gehl, J. (2011). Gene Electrotransfer to Skin. In: Kee, S., Gehl, J., Lee, E. (eds) Clinical Aspects of Electroporation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8363-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8363-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8362-6

  • Online ISBN: 978-1-4419-8363-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics