Skip to main content

Portal Hypertension: Intrahepatic Mechanisms

  • Chapter
  • First Online:
Vascular Liver Disease

Abstract

Portal hypertension is one of the most life-threatening complications of cirrhosis, leading to the development of ascites and esophageal varices. Increased intrahepatic resistance is the initial event in the development of portal hypertension. Anatomical lesions contribute approximately to 70% of the increased intrahepatic vascular resistance. These include regenerative nodules, capillarization of sinusoids, sinusoidal collapse, and hepatocyte enlargement. The remaining 30% represents the dynamic component of the increased intrahepatic vascular resistance. Hepatic stellate cells play a central role in the regulation of sinusoidal resistance. These cells are transformed to a myofibroblast-like cell type with increased constrictive properties. Increased levels of vasoconstrictors and decreased levels of vasodilators lead to HSC constriction and subsequently to an increase in intrahepatic vascular resistance. On the other hand, higher concentrations of vasodilators induce hepatic arterial vasodilatation and a lower vascular resistance of the hepatic artery in cirrhosis. Additionally, vascular architectural changes are present in cirrhosis and recent investigations have focused on the presence of neoangiogenesis and vascular remodeling in the intrahepatic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol. 2006;44:217–31.

    Article  PubMed  Google Scholar 

  2. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35:478–91.

    Article  PubMed  CAS  Google Scholar 

  3. Gupta TK, Toruner M, Groszmann RJ. Intrahepatic modulation of portal pressure and its role in portal hypertension. Role of nitric oxide. Digestion. 1998;59:413–5.

    Article  PubMed  CAS  Google Scholar 

  4. Zipprich A. Hemodynamics in the isolated cirrhotic liver. J Clin Gastroenterol. 2007;41 Suppl 3:S254–8.

    Article  PubMed  Google Scholar 

  5. Pinzani M, Failli P, Ruocco C, Casini A, Milani S, Baldi E, et al. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest. 1992;90:642–6.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang JX, Pegoli Jr W, Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol. 1994;266:G624–32.

    PubMed  CAS  Google Scholar 

  7. Lee CH, Loureiro-Silva MR, Abraldes JG, Iwakiri Y, Haq O, Groszmann RJ. Decreased intrahepatic response to alpha(1)-adrenergic agonists in lipopolysaccharide-treated rats is located in the sinusoidal area and depends on Kupffer cell function. J Gastroenterol Hepatol. 2007;22:893–900.

    Article  PubMed  Google Scholar 

  8. Le Couteur DG, Fraser R, Hilmer S, Rivory LP, McLean AJ. The hepatic sinusoid in aging and cirrhosis: effects on hepatic substrate disposition and drug clearance. Clin Pharmacokinet. 2005;44:187–200.

    Article  PubMed  Google Scholar 

  9. Burridge K, Wennerberg K. Rho and Rac take center stage. Cell. 2004;116:167–79.

    Article  PubMed  CAS  Google Scholar 

  10. Aktories K. Bacterial toxins that target Rho proteins. J Clin Invest. 1997;99:827–9.

    Article  PubMed  CAS  Google Scholar 

  11. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996;271:20246–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nakamura M, Nagano T, Chikama T, Nishida T. Role of the small GTP-binding protein rho in epithelial cell migration in the rabbit cornea. Invest Ophthalmol Vis Sci. 2001;42:941–7.

    PubMed  CAS  Google Scholar 

  13. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology. 1996;24:233–40.

    Article  PubMed  CAS  Google Scholar 

  14. Mittal MK, Gupta TK, Lee FY, Sieber CC, Groszmann RJ. Nitric oxide modulates hepatic vascular tone in normal rat liver. Am J Physiol. 1994;267:G416–22.

    PubMed  CAS  Google Scholar 

  15. Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48:920–30.

    Article  PubMed  CAS  Google Scholar 

  16. Richter S, Vollmar B, Mucke I, Post S, Menger MD. Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J Physiol. 2001;531:193–201.

    Article  PubMed  CAS  Google Scholar 

  17. Loureiro-Silva MR, Cadelina GW, Groszmann RJ. Deficit in nitric oxide production in cirrhotic rat livers is located in the sinusoidal and postsinusoidal areas. Am J Physiol Gastrointest Liver Physiol. 2003;284:G567–74.

    PubMed  CAS  Google Scholar 

  18. Zipprich A, Loureiro-Silva MR, D’Silva I, Groszmann RJ. The role of hepatic arterial flow on portal venous and hepatic venous wedged pressure in the isolated perfused CCl4-cirrhotic liver. Am J Physiol Gastrointest Liver Physiol. 2008;295:G197–202.

    Article  PubMed  CAS  Google Scholar 

  19. Richter S, Mucke I, Menger MD, Vollmar B. Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 2000;279:G454–62.

    PubMed  CAS  Google Scholar 

  20. Lautt WW, Legare DJ, D’Almeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol. 1985;248:H331–8.

    PubMed  CAS  Google Scholar 

  21. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol. 1985;249:G549–56.

    PubMed  CAS  Google Scholar 

  22. Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol. 2006;44:111–7.

    Article  PubMed  Google Scholar 

  23. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–69.

    Article  PubMed  CAS  Google Scholar 

  24. Bataller R, Gasull X, Gines P, Hellemans K, Gorbig MN, Nicolas JM, et al. In vitro and in vivo activation of rat hepatic stellate cells results in de novo expression of L-type voltage-operated calcium channels. Hepatology. 2001;33:956–62.

    Article  PubMed  CAS  Google Scholar 

  25. Gasull X, Bataller R, Gines P, Sancho-Bru P, Nicolas JM, Gorbig MN, et al. Human myofibroblastic hepatic stellate cells express Ca(2+)-activated K(+) channels that modulate the effects of endothelin-1 and nitric oxide. J Hepatol. 2001;35:739–48.

    Article  PubMed  CAS  Google Scholar 

  26. Laleman W, Van Landeghem L, Severi T, Vander Elst I, Zeegers M, Bisschops R, et al. Both Ca2+ -dependent and -independent pathways are involved in rat hepatic stellate cell contraction and intrahepatic hyperresponsiveness to methoxamine. Am J Physiol Gastrointest Liver Physiol. 2007;292:G556–564.

    Article  PubMed  CAS  Google Scholar 

  27. Rockey D. The cellular pathogenesis of portal hypertension: stellate cell contractility, endothelin, and nitric oxide. Hepatology. 1997;25:2–5.

    Article  PubMed  CAS  Google Scholar 

  28. Gracia-Sancho J, Lavina B, Rodriguez-Vilarrupla A, Garcia-Caldero H, Bosch J, Garcia-Pagan JC. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J Hepatol. 2007;47:220–7.

    Article  PubMed  CAS  Google Scholar 

  29. Graupera M, March S, Engel P, Rodes J, Bosch J, Garcia-Pagan JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol. 2005;288:G763–70.

    Article  PubMed  CAS  Google Scholar 

  30. Steib CJ, Gerbes AL, Bystron M, Op den Winkel M, Hartl J, Roggel F, et al. Kupffer cell activation in normal and fibrotic livers increases portal pressure via thromboxane A(2). J Hepatol. 2007;47:228–38.

    Article  PubMed  CAS  Google Scholar 

  31. Bataller R, Gines P, Nicolas JM, Gorbig MN, Garcia-Ramallo E, Gasull X, et al. Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology. 2000;118:1149–56.

    Article  PubMed  CAS  Google Scholar 

  32. Bataller R, Nicolas JM, Ginees P, Gorbig MN, Garcia-Ramallo E, Lario S, et al. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels. J Hepatol. 1998;29:398–408.

    Article  PubMed  CAS  Google Scholar 

  33. Bataller R, Sancho-Bru P, Gines P, Lora JM, Al Garawi A, Sole M, et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–25.

    Article  PubMed  CAS  Google Scholar 

  34. Schepke M, Werner E, Biecker E, Schiedermaier P, Heller J, Neef M, et al. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology. 2001;121:389–95.

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez-Abraldes J, Albillos A, Banares R, Del Arbol LR, Moitinho E, Rodriguez C, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121:382–8.

    Article  PubMed  CAS  Google Scholar 

  36. Yanase M, Ikeda H, Matsui A, Maekawa H, Noiri E, Tomiya T, et al. Lysophosphatidic acid enhances collagen gel contraction by hepatic stellate cells: association with rho-kinase. Biochem Biophys Res Commun. 2000;277:72–8.

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, et al. Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2003;285:G880–6.

    PubMed  CAS  Google Scholar 

  38. Zhou Q, Hennenberg M, Trebicka J, Jochem K, Leifeld L, Biecker E, et al. Intrahepatic upregulation of RhoA and Rho-kinase signalling contributes to increased hepatic vascular resistance in rats with secondary biliary cirrhosis. Gut. 2006;55:1296–305.

    Article  PubMed  CAS  Google Scholar 

  39. Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, et al. Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatology. 2009;49:185–94.

    Article  PubMed  CAS  Google Scholar 

  40. Loureiro-Silva MR, Iwakiri Y, Abraldes JG, Haq O, Groszmann RJ. Increased phosphodiesterase-5 expression is involved in the decreased vasodilator response to nitric oxide in cirrhotic rat livers. J Hepatol. 2006;44:886–93.

    Article  PubMed  CAS  Google Scholar 

  41. Shah V, Toruner M, Haddad F, Cadelina G, Papapetropoulos A, Choo K, et al. Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat. Gastroenterology. 1999;117:1222–8.

    Article  PubMed  CAS  Google Scholar 

  42. Shah V, Cao S, Hendrickson H, Yao J, Katusic ZS. Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1209–16.

    PubMed  CAS  Google Scholar 

  43. Shah V. Cellular and molecular basis of portal hypertension. Clin Liver Dis. 2001;5:629–44.

    Article  PubMed  CAS  Google Scholar 

  44. Abraldes JG, Rodriguez-Vilarrupla A, Graupera M, Zafra C, Garcia-Caldero H, Garcia-Pagan JC, et al. Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl(4) cirrhotic rats. J Hepatol. 2007;46:1040–6.

    Article  PubMed  CAS  Google Scholar 

  45. Zafra C, Abraldes JG, Turnes J, Berzigotti A, Fernandez M, Garca-Pagan JC, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126:749–55.

    Article  PubMed  CAS  Google Scholar 

  46. Abraldes JG, Albillos A, Banares R, Turnes J, Gonzalez R, Garcia-Pagan JC, et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136:1651–8.

    Article  PubMed  CAS  Google Scholar 

  47. Liu S, Premont RT, Kontos CD, Zhu S, Rockey DC. A crucial role for GRK2 in regulation of endothelial cell nitric oxide synthase function in portal hypertension. Nat Med. 2005;11:952–8.

    Article  PubMed  CAS  Google Scholar 

  48. Semela D, Langer DA, Shah V. GRK2 makes trouble: a no-NO in portal hypertension. Gastroenterology 2006;130:1001–3; discussion 1003.

    Google Scholar 

  49. Tran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atheroscler Suppl. 2003;4:33–40.

    Article  PubMed  CAS  Google Scholar 

  50. Laleman W, Omasta A, Van de Casteele M, Zeegers M, Vander Elst I, Van Landeghem L, et al. A role for asymmetric dimethylarginine in the pathophysiology of portal hypertension in rats with biliary cirrhosis. Hepatology. 2005;42:1382–90.

    Article  PubMed  CAS  Google Scholar 

  51. Matei V, Rodriguez-Vilarrupla A, Deulofeu R, Colomer D, Fernandez M, Bosch J, et al. The eNOS cofactor tetrahydrobiopterin improves endothelial dysfunction in livers of rats with CCl4 cirrhosis. Hepatology. 2006;44:44–52.

    Article  PubMed  CAS  Google Scholar 

  52. Dudenhoefer AA, Loureiro-Silva MR, Cadelina GW, Gupta T, Groszmann RJ. Bioactivation of nitroglycerin and vasomotor response to nitric oxide are impaired in cirrhotic rat livers. Hepatology. 2002;36:381–5.

    Article  PubMed  CAS  Google Scholar 

  53. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology. 1998;28:926–31.

    Article  PubMed  CAS  Google Scholar 

  54. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46:927–34.

    Article  PubMed  CAS  Google Scholar 

  55. Loureiro-Silva MR, Cadelina GW, Iwakiri Y, Groszmann RJ. A liver-specific nitric oxide donor improves the intra-hepatic vascular response to both portal blood flow increase and methoxamine in cirrhotic rats. J Hepatol. 2003;39:940–6.

    Article  PubMed  CAS  Google Scholar 

  56. Fiorucci S, Antonelli E, Brancaleone V, Sanpaolo L, Orlandi S, Distrutti E, et al. NCX-1000, a nitric oxide-releasing derivative of ursodeoxycholic acid, ameliorates portal hypertension and lowers norepinephrine-induced intrahepatic resistance in the isolated and perfused rat liver. J Hepatol. 2003;39:932–9.

    Article  PubMed  CAS  Google Scholar 

  57. Shah V, Chen AF, Cao S, Hendrickson H, Weiler D, Smith L, et al. Gene transfer of recombinant endothelial nitric oxide synthase to liver in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1023–30.

    PubMed  CAS  Google Scholar 

  58. Robert K, Nehme J, Bourdon E, Pivert G, Friguet B, Delcayre C, et al. Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology. 2005;128:1405–15.

    Article  PubMed  CAS  Google Scholar 

  59. Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology. 2005;42:539–48.

    Article  PubMed  CAS  Google Scholar 

  60. Ekataksin W, Kaneda K. Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis. 1999;19:359–82.

    Article  PubMed  CAS  Google Scholar 

  61. Kleber G, Steudel N, Behrmann C, Zipprich A, Hubner G, Lotterer E, et al. Hepatic arterial flow volume and reserve in patients with cirrhosis: use of intra-arterial Doppler and adenosine infusion. Gastroenterology. 1999;116:906–14.

    Article  PubMed  CAS  Google Scholar 

  62. Zipprich A, Loureiro-Silva MR, Jain D, D’Silva I, Groszmann RJ. Nitric oxide and vascular remodeling modulate hepatic arterial vascular resistance in the isolated perfused cirrhotic rat liver. J Hepatol. 2008;49:739–45.

    Article  PubMed  CAS  Google Scholar 

  63. Mejias M, Garcia-Pras E, Tiani C, Miquel R, Bosch J, Fernandez M. Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology. 2009;49:1245–56.

    Article  PubMed  CAS  Google Scholar 

  64. Semela D, Das A, Langer D, Kang N, Leof E, Shah V. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology. 2008;135:671–9.

    Article  PubMed  CAS  Google Scholar 

  65. Angermayr B, Fernandez M, Mejias M, Gracia-Sancho J, Garcia-Pagan JC, Bosch J. NAD(P)H oxidase modulates angiogenesis and the development of portosystemic collaterals and splanchnic hyperaemia in portal hypertensive rats. Gut. 2007;56:560–4.

    Article  PubMed  CAS  Google Scholar 

  66. Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology. 2007;45:817–25.

    Article  PubMed  CAS  Google Scholar 

  67. Fernandez M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–20.

    Article  PubMed  CAS  Google Scholar 

  68. Medina J, Arroyo AG, Sanchez-Madrid F, Moreno-Otero R. Angiogenesis in chronic inflammatory liver disease. Hepatology. 2004;39:1185–95.

    Article  PubMed  CAS  Google Scholar 

  69. Hickey PL, Angus PW, McLean A, Morgan DJ. Oxygen supplementation restores theophylline clearance to normal in cirrhotic rats. Gastroenterology. 1995;1995:1504–9.

    Article  Google Scholar 

  70. Bozova S, Elpek GO. Hypoxia-inducible factor-1alpha expression in experimental cirrhosis: correlation with vascular endothelial growth factor expression and angiogenesis. APMIS. 2007;115:795–801.

    Article  PubMed  CAS  Google Scholar 

  71. Corpechot C, Barbu V, Wendum D, Kinnman N, Rey C, Poupon R, et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology. 2002;35:1010–21.

    Article  PubMed  CAS  Google Scholar 

  72. Rosmorduc O, Wendum D, Corpechot C, Galy B, Sebbagh N, Raleigh J, et al. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol. 1999;155:1065–73.

    Article  PubMed  CAS  Google Scholar 

  73. Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, et al. Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells. J Biol Chem. 2003;278:31277–85.

    Article  PubMed  CAS  Google Scholar 

  74. Tugues S, Fernandez-Varo G, Munoz-Luque J, Ros J, Arroyo V, Rodes J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology. 2007;46:1919–26.

    Article  PubMed  CAS  Google Scholar 

  75. Mucke I, Richter S, Menger MD, Vollmar B. Significance of hepatic arterial responsiveness for adequate tissue oxygenation upon portal vein occlusion in cirrhotic livers. Int J Colorectal Dis. 2000;15:335–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto J. Groszmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Zipprich, A., Groszmann, R.J. (2011). Portal Hypertension: Intrahepatic Mechanisms. In: DeLeve, L., Garcia-Tsao, G. (eds) Vascular Liver Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8327-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8327-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8326-8

  • Online ISBN: 978-1-4419-8327-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics