Skip to main content

Nonlocal Dielectric Effects

  • Chapter
  • First Online:
Topics in Theoretical and Computational Nanoscience

Part of the book series: Springer Theses ((Springer Theses))

  • 931 Accesses

Abstract

The content that appears in this chapter has been largely adapted from the following publications: McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403. doi: 10.1103/PhysRevLett.103.097403. McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423. http://arxiv.org/abs/0912.4746. McMahon JM, Gray SK, Schatz GC (2010) Nonlocal dielectric effects in core–shell nanowires. J Phys Chem C 114:15903-15908. doi: 10.1021/jp910899b. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances in colloidal nanoparticles. (submitted, 2010). McMahon JM, Gray SK, Schatz GC (2011) Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys Rev B 83:115428. The experimental work that appears in this chapter was done by Peng and Sun. Although, the experimental aspects are not discussed heavily, and the reader interested in such details is referred to Ref. [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances in colloidal nanoparticles (submitted)

    Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Agarwal GS, Pattanayak DN, Wolf E (1974) Electromagnetic fields in spatially dispersive media. Phys Rev B 10:1447–1475

    Article  Google Scholar 

  4. Anderegg M, Feuerbacher B, Fitton B (1971) Optically excited longitudinal plasmons in potassium. Phys Rev Lett 27:1565–1568

    Article  CAS  Google Scholar 

  5. Lindau I, Nilsson PO (1970) Experimental evidence for excitation of longitudinal plasmons by photons. Phys Lett A 31:352–353

    Article  Google Scholar 

  6. Jones WE, Kliewer KL, Fuchs R (1969) Nonlocal theory of the optical properties of thin metallic films. Phys Rev 178:1201–1203

    Article  Google Scholar 

  7. McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403

    Article  Google Scholar 

  8. Palomba S, Novotny L, Palmer RE (2008) Blue-shifted plasmon resonance of individual size-selected gold nanoparticles. Opt Commun 281:480–483

    CAS  Google Scholar 

  9. McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423

    Article  Google Scholar 

  10. Dasgupta BB, Fuchs R (1981) Polarizability of a small sphere including nonlocal effects. Phys Rev B 24:554–561

    Article  CAS  Google Scholar 

  11. Chang R, Leung PT (2006) Nonlocal effects on optical and molecular interactions with metallic nanoshells. Phys Rev B 73:125438

    Article  Google Scholar 

  12. García de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983–17987

    Article  Google Scholar 

  13. Tserkezis C, Gantzounis G, Stefanou N (2008) Collective plasmonic modes in ordered assemblies of metallic nanoshells. J Phys Condens Matter 20:075232

    Article  Google Scholar 

  14. Pack A, Hietschold M, Wannemacher R (2001) Failure of local Mie theory: optical spectra of colloidal aggregates. Opt Commun 194:277–287

    Article  CAS  Google Scholar 

  15. Yannopapas V (2008) Non-local optical response of two-dimensional arrays of metallic nanoparticles. J Phys Condens Matter 20:325211

    Article  Google Scholar 

  16. McMahon JM, Gray SK, Schatz GC (2011) Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys Rev B 83:115428

    Article  Google Scholar 

  17. Liu M, Guyot-Sionnest P, Lee T-W, Gray SK (2007) Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys Rev B 76:235428

    Article  Google Scholar 

  18. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  19. Boardman AD (1982) Hydrodynamic theory of plasmon-polaritons on plane surfaces. In: Boardman AD (eds) Electromagnetic Surface Modes. Wiley, New York

    Google Scholar 

  20. Fetter AL (1973) Electrodynamics of a layered electron gas. I. Single layer. Ann Phys 81:367–393

    Article  Google Scholar 

  21. Harris J (1971) Surface-plasmon dispersion: a comparison of microscopic and hydrodynamic theories. Phys Rev B 4:1022–1027

    Article  Google Scholar 

  22. McMahon JM, Gray SK, Schatz GC (2010) Nonlocal dielectric effects in core–shell nanowires. J Phys Chem C 114:15903–15908

    Article  CAS  Google Scholar 

  23. Marinopoulos AG, Reining L, Rubio A (2008) Ab initio study of the dielectric response of crystalline ropes of metallic single-walled carbon nanotubes: tube-diameter and helicity effects. Phys Rev B 78:235428

    Article  Google Scholar 

  24. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) NUMERICAL RECIPES in C: The Art of Scientific Computing. 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  25. Taflove A, Hagness S (2005) Computational electrodynamics: the finite-difference time-domain method. 3rd edn. Artech House, Boston

    Google Scholar 

  26. Roden JA, Gedney SD (2000) Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media. Microw Opt Tech Lett 27:334–339

    Article  Google Scholar 

  27. Merewether DE, Fisher R, Smith FW (1980) On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies. IEEE T Nucl Sci 27:1829–1833

    Article  Google Scholar 

  28. Mur G (1981) Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic field equations. IEEE T Elecromagn C 23:377–382

    Article  Google Scholar 

  29. Umashankar KR, Taflove A (1982) A novel method to analyze electromagnetic scattering of complex objects. IEEE Electromagn Compat 24:397–405

    Article  Google Scholar 

  30. Halevi P, Fuchs R (1984) Generalised additional boundary condition for non-local dielectrics: I Reflectivity. J Phys C Solid State 17:3869–3888

    Article  Google Scholar 

  31. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B, 6:4370–4379

    Article  CAS  Google Scholar 

  32. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  33. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934

    Article  CAS  Google Scholar 

  34. Liu M, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108:5882–5888

    Article  CAS  Google Scholar 

  35. Apell P, Penn DR (1983) Optical properties of small metal spheres: surface effects. Phys Rev Lett 50:1316–1319

    Article  CAS  Google Scholar 

  36. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  37. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt Express 6:213–219

    Article  CAS  Google Scholar 

  38. Westcott SL, Jackson JB, Radloff C, Halas NJ (2002) Relative contributions to the plasmon line shape of metal nanoshells. Phys Rev B 66:155431

    Article  Google Scholar 

  39. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances.   Chem Phys Lett 288:243–247

    Article  CAS  Google Scholar 

  40. Hao E, Li S, Bailey RC, Zou S, Schatz GC, Hupp JT (2004) Optical properties of metal nanoshells. J Phys Chem B 108:1224–1229

    Article  CAS  Google Scholar 

  41. Tam F, Moran C, Halas NJ (2004) Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment. J Phys Chem B 108:17290–17294

    Article  CAS  Google Scholar 

  42. Oldenburg SJ, Westcott SL, Averitt RD, Halas NJ (1999) Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates.   Chem Phys Lett 111:4729

    CAS  Google Scholar 

  43. Prodan E, Nordlander P, Halas NJ (2003) Effects of dielectric screening on the optical properties of metallic nanoshells. Chem Phys Lett 368:94–101

    Article  CAS  Google Scholar 

  44. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  45. McMahon JM, Henry A-I, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  46. Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663

    Article  CAS  Google Scholar 

  47. Xu H (2004) Theoretical study of coated spherical metallic nanoparticles for single-molecule surface enhanced spectroscopy. Appl Phys Lett 85:5980–5982

    Article  CAS  Google Scholar 

  48. Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617

    Article  CAS  Google Scholar 

  49. Ruppin R (1976) Optical properties of a metal sphere with a diffuse surface. J Opt Soc Am 66:449–453

    Article  CAS  Google Scholar 

  50. Schmeits M, Dambly L (1991) Fast-electron scattering by bispherical surface-plasmon modes. Phys Rev B 44:12706–12712

    Article  Google Scholar 

  51. Höflich K, Gösele U, Christiansen S (2009) Near-field investigations of nanoshell cylinder dimers. J Chem Phys 131:164704

    Article  Google Scholar 

  52. Qian X-M, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  CAS  Google Scholar 

  53. N’Gom M, Li S, Schatz GC, Erni R, Agarwal A, Kotov N, Norris TB (2009) Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods. Phys Rev B 80:113411

    Article  Google Scholar 

  54. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  55. Jensen LL, Jensen L (2009) Atomistic electrodynamics model for optical properties of silver nanoclusters. J Phys Chem C 113:15182–15190

    Article  CAS  Google Scholar 

  56. Peña O, Pal U (2009) Scattering of electromagnetic radiation by a multilayered sphere. Comput Phys Commun 180:2348–2354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Michael McMahon .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMahon, J.M. (2011). Nonlocal Dielectric Effects. In: Topics in Theoretical and Computational Nanoscience. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8249-0_8

Download citation

Publish with us

Policies and ethics