Skip to main content

Nanostructured Metal Films

  • Chapter
  • First Online:
Topics in Theoretical and Computational Nanoscience

Part of the book series: Springer Theses ((Springer Theses))

  • 867 Accesses

Abstract

Schatz GC, McMahon JM, Gray SK (2007) Tailoring the parameters of nanohole arrays in gold films for sensing applications. Proc SPIE 6641 664103/1–8 DOI:10.1117/12.790647. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt Express 15:18119–18129. DOI:10.1364/OE.15.018119. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17:2334–2340. DOI:10.1364/OE.17.002334. Odom TW, Gao H, McMahon JM, Henzie J, Schatz GC (2009) Plasmonic superlattices: hierarchical subwavelength hole arrays. Chem Phys Lett 483:187–192. DOI:10.1016/j.cplett.2009.10.084. McMahon JM, Gray SK, Schatz GC (2011) Surface nanophotonics theory. In: Wiederrecht G (ed) Comprehensive nanoscience and technology. Elsevier, Amsterdam

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahon JM, Gray SK, Schatz GC (2011) Surface nanophotonics theory. Comprehensive Nanoscience and Technology. In: Wiederrech G (ed), Elsevier: Amsterdam

    Google Scholar 

  2. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly–surface plasmon polaritons. Opt Express 15:18119–18129

    Article  Google Scholar 

  3. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly–surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express, 17:2334–2340

    Article  CAS  Google Scholar 

  4. Odom TW, Gao H, McMahon JM, Henzie J, Schatz GC (2009) Plasmonic superlattices: Hierarchical subwavelength hole arrays. Chem Phys Lett 483:187–192

    Article  CAS  Google Scholar 

  5. Schatz GC, McMahon JM, Gray SK (2007) Tailoring the parameters of nanohole arrays in gold films for sensing applications. In: Mark I Stockman (ed), Plasmonics: Metallic Nanostructures and Their Optical Properties V. 664103:1–8

    Google Scholar 

  6. Raether H (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin

    Google Scholar 

  7. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through subwavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  8. Yeh P (1988) Optical Waves in Layered Media. Wiley, New York

    Google Scholar 

  9. Lynch DW, Hunter WR (1985) Comments on the optical constants of metals and an introduction to the data for several metals. In: Palik ED (eds) Handbook of optical constants of solids. Academic Press, Orlando, pp 275–368

    Google Scholar 

  10. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  11. Kretschmann E (1971) The determination of the optical constants of metals by excitation of surface plasmons. Z Phys 241:313–324

    Article  CAS  Google Scholar 

  12. Otto A (1968) Excitation of nonradiative surface plasma waves on silver by the method of frustrated total reflection. Z Phys 216:398–410

    Article  CAS  Google Scholar 

  13. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly–surface plasmon polaritons. Opt Express 15:18119–18129

    Article  Google Scholar 

  14. Degiron A, Lezec HJ, Yamamoto N, Ebbesen TW (2004) Optical transmission properties of a single subwavelength aperture in a real metal. Opt Commun 239:61–66

    Article  CAS  Google Scholar 

  15. Barnes WL, Murray AW, Dintinger J, Devaux E, Lezec HJ, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film. Phys Rev Lett 92:107401

    Article  CAS  Google Scholar 

  16. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782

    Article  CAS  Google Scholar 

  17. Hessel A, Oliner AA (1965) A new theory of Wood’s anomalies on optical gratings. Appl Optics 4:1275–1297

    Article  Google Scholar 

  18. Darmanyan S, Nevière M, Zayats A (2004) Analytical theory of optical transmission through periodically structured metallic films via tunnel-coupled surface polariton modes. Phys Rev B 70:075103

    Article  Google Scholar 

  19. Lee MH, Gao H, Odom TW (2009) Refractive index sensing using quasi one-dimensional nanoslit arrays. Nano Lett 9:2584–2588

    Article  CAS  Google Scholar 

  20. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848

    Article  CAS  Google Scholar 

  21. Bravo-Abad J, Martín-Moreno L, García-Vidal FJ (2004) Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit. Phys Rev E 69:026601

    Article  CAS  Google Scholar 

  22. Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66:163–182

    Article  Google Scholar 

  23. Babayan Y, McMahon JM, Li S, Gray SK, Schatz GC, Odom TW (2009) Confining standing waves in optical corrals. ACS Nano 3:615–620

    Article  CAS  Google Scholar 

  24. McMahon JM, Gray SK, Schatz GC (2008) Dephasing of electromagnetic fields in scattering from an isolated slit in a gold film. In: S. Kawata (ed) Plasmonics: Nanoimaging, Nanofabrication, and Their Applications IV, 703311:1–6

    Google Scholar 

  25. Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang S-H, Gray SK, Schatz GC, Brown DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85:467–469

    Article  CAS  Google Scholar 

  26. Wannemacher R (2001) Plasmon-supported transmission of light through nanometric holes in metallic thin films. Opt Commun 195:107–118

    Article  CAS  Google Scholar 

  27. Hafner C (1990) The Generalized Multipole Technique for Computational Electromagnetics. Artech House, Boston

    Google Scholar 

  28. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M (2004) Optical spectroscopy of nanometric holes in thin gold films. Nano Lett 4:1003–1007

    Article  CAS  Google Scholar 

  29. Rindzevicius T, Alaverdyan Y, Sepulveda B, Pakizeh T, Käll M (2007) Nanohole plasmons in optically thin gold films. J Phys Chem C 111:1207–1212

    Article  CAS  Google Scholar 

  30. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: A systematic single particle approach. J Phys Chem C 114:12511–12516

    Article  CAS  Google Scholar 

  31. Treacy MMJ (2002) Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys Rev B 66:195105

    Article  Google Scholar 

  32. Jones WE, Kliewer KL, Fuchs R (1969) Nonlocal theory of the optical properties of thin metallic films. Phys Rev 178:1201–1203

    Article  Google Scholar 

  33. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances. Phys Rev B 96:233901

    Article  Google Scholar 

  34. Genet C, van Exter MP, Woerdman JP (2003) Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt Commun 225:331–336

    Article  CAS  Google Scholar 

  35. Stewart ME, Mack NH, Malyarchuck V, Soares JANT, Lee T-W, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. P Natl Acad Sci USA 103:17143–17148

    Article  CAS  Google Scholar 

  36. van der Molen KL, Segerink FB, van Hulst NF, Kuipers L (2004) Influence of hole size on the extraordinary transmission through subwavelength hole arrays. Appl Phys Lett 85:4316–4318

    Article  Google Scholar 

  37. Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901

    Article  Google Scholar 

  38. van der Molen KL, Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2005) Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys Rev B 72:045421

    Article  Google Scholar 

  39. Shou X, Agrawal A, Nahata A (2005) Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures. Opt Express 13:9834–9840

    Article  Google Scholar 

  40. Kim JH, Moyer PJ (2006) Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films. Opt Express 14:6595–6603

    Article  Google Scholar 

  41. Steele J, Moran C, Aguirre A, Lee A, Halas NJ (2003) Metallodielectric gratings with subwavelength slots: Optical properties. Phys Rev B 68:205103

    Article  Google Scholar 

  42. Gao H, Henzie J, Lee MH, Odom TW (2008) Screening plasmonic materials using pyramidal gratings. P Natl Acad Sci USA 105:20146–20151

    Article  CAS  Google Scholar 

  43. Piciu OM, Docter MW, van der Krogt MC, Garini Y, Young IT, Sarro PM, Bossche A (2007) Fabrication and optical characterization of nano-hole arrays in gold and gold/palladium films on glass. Inst Mech Engin Part N: J Nanoengin Nanosyst 221:107–114

    Article  Google Scholar 

  44. Johnson PB, Christy RW (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev B 9:5056–5070

    Article  CAS  Google Scholar 

  45. Bonod N, Enoch S, Li L, Evgeny L, Nevière M (2003) Resonant optical transmission through thin metallic films with and without holes. Opt Express 11:482–490

    Article  CAS  Google Scholar 

  46. Degiron A, Ebbesen TW (2004) Analysis of the transmission process through single apertures surrounded by periodic corrugations. Opt Express 12:3694–3700

    Article  CAS  Google Scholar 

  47. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  48. Yao JM, Stuart ME, Maria J, Lee T-W, Gray SK, Rogers JA, Nuzzo RG (2008) Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew Chem Int Ed 47:5013–5017

    Article  CAS  Google Scholar 

  49. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG, Schatz GC, Van Duyne RP (2005) Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J Phys Chem B 109:22351–22358

    Article  CAS  Google Scholar 

  50. Baida FI, Belkhir A, Van Labeke D (2006) Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes. Phys Rev B 74:205419

    Article  Google Scholar 

  51. Poujet Y, Salvi J, Baida FI (2007) 90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays. Opt Lett 32:2942–2944

    Article  CAS  Google Scholar 

  52. Haftel MI, Schlockermann C, Blumberg G (2006) Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons. Phys Rev B 74:235405

    Article  Google Scholar 

  53. Orbons SM, Roberts A, Jamieson DN, Haftel MI, Schlockermann C, Freeman D, Luther-Davies B (2007) Extraordinary optical transmission with coaxial apertures. Appl Phys Lett 90:251107

    Article  Google Scholar 

  54. McMahon JM, Gray SK, Schatz GC (2010) Geometric plasmonics. In preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Michael McMahon .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMahon, J.M. (2011). Nanostructured Metal Films. In: Topics in Theoretical and Computational Nanoscience. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8249-0_6

Download citation

Publish with us

Policies and ethics