Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The ultimate goal of theoretical science is to explain phenomena that occur in nature. At the current time, (it is believed that) many of the fundamental laws of nature have been elucidated, and now, most of the phenomena of interest are those that arise from collective effects. Consider, for example, the branch of chemistry. In principle, nearly all of chemistry can be described using the fundamental theory of quantum mechanics (the mechanics of small particles). For the most basic systems, such as a hydrogen-like atoms (i.e., those with a single electron), analytical (theoretical) solutions to the relevant equations exist (using simplifying approximations), and have been known for some time. However, for larger, and more complex systems, such descriptions are not possible. Thus, at this level, theoretical and computational science has merged (terms which will be used interchangeably throughout this dissertation), where the latter approach is used to numerically obtain approximate solutions to the equations of the former.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  2. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  3. Henzie J, Lee MH, Odom TW (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549–554

    Article  CAS  Google Scholar 

  4. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  5. McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C 113:2731–2735

    Article  CAS  Google Scholar 

  6. Ringe E, McMahon JM, Sohn K, Cobley C, Xia Y, Huang J, Schatz GC, Marks LD, Van Duyne RP (2010) Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach. J Phys Rev C 114:12511–12516

    Article  CAS  Google Scholar 

  7. McMahon JM, Gray SK, Schatz GC (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys Rev Lett 103:097403

    Article  CAS  Google Scholar 

  8. McMahon JM, Gray SK, Schatz GC (2010) Calculating nonlocal optical properties of structures with arbitrary shape. Phys Rev B 82:035423

    Article  CAS  Google Scholar 

  9. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  10. McMahon JM, Henry A-I, Wustholz KL, Natan MJ, Freeman RG, Van Duyne RP, Schatz GC (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1819–1825

    Article  CAS  Google Scholar 

  11. Wustholz KL, Henry A-I, McMahon JM, Freeman RG, Valley N, Piotti ME, Natan MJ, Schatz GC, Van Duyne RP (2010) Structure-activity relationships in gold nanoparticle dimers and timers for surface-enhanced raman spectroscopy. J Am Chem Soc 132:10903–10910

    Article  CAS  Google Scholar 

  12. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through subwavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  13. McMahon JM, Henzie J, Odom TW, Schatz GC, Gray SK (2007) Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt Express 15:18119–18129

    Article  Google Scholar 

  14. McMahon JM, Gray SK, Schatz GC (2011) Surface nanophotonics theory. In: G. Wiederrecht (ed) Comprehensive nanoscience and technology. Elsevier, Amsterdam

    Google Scholar 

  15. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17:2334–2340

    Article  CAS  Google Scholar 

  16. Odom TW, Gao H, McMahon JM, Henzie J, Schatz GC (2009) Plasmonic superlattices: hierarchical subwavelength hole arrays. Chem Phys Lett 483:187–192

    Article  CAS  Google Scholar 

  17. Schatz GC, McMahon JM, Gray SK (2007) Tailoring the parameters of nanohole arrays in gold films for sensing applications. In: Mark I Stockman (ed) Plasmonics: metallic nanostructures and their optical properties V, pp 664103(1–8)

    Google Scholar 

  18. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  19. Shalaev VM (2006) Optical negative-index metamaterials. Nat Photonics 1:41–48

    Article  Google Scholar 

  20. Babayan Y, McMahon JM, Li S, Gray SK, Schatz GC, Odom TW (2009) Confining standing waves in optical corrals. ACS Nano 3:615–620

    Article  CAS  Google Scholar 

  21. McMahon JM, Gray SK, Schatz GC (2008) Dephasing of electromagnetic fields in scattering from an isolated slit in a gold film. In: Kawata S (ed) Plasmonics: nanoimaging, nanofabrication, and their applications IV. pp 703311/1–6

    Google Scholar 

  22. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos T R Soc Lond 147:145–181

    Article  Google Scholar 

  23. Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–63

    Article  CAS  Google Scholar 

  24. Dionne JA, Lezec HJ, Atwater HA (2006) Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett 6:1928–1932

    Article  CAS  Google Scholar 

  25. Dionne JA, Sweatlock LA, Atwater HA, Polman A (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  CAS  Google Scholar 

  26. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  27. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  28. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett 5:2246–2252

    Article  CAS  Google Scholar 

  29. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521

    Article  CAS  Google Scholar 

  30. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensors. Nat Mater 7:442–453

    Article  CAS  Google Scholar 

  31. Haes AJ, Chang L, Klein LW, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271

    Article  CAS  Google Scholar 

  32. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  33. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604

    Article  CAS  Google Scholar 

  34. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  35. Link S, Wang ZL, El-Sayed MA (1999) Alloy formation of gold–silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B 103:3529–3533

    Article  CAS  Google Scholar 

  36. Haynes CL, Van Duyne RP (2001) Nanosphere Lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Google Scholar 

  37. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  38. Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  Google Scholar 

  39. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  40. Xu G, Chen Y, Tazawa M, Jin P (2006) Surface plasmon resonance of silver nanoparticles on vanadium dioxide. J Phys Chem B 110:2051–2056

    Article  CAS  Google Scholar 

  41. Pinchuk A, Hilger A, von Plessen G, Kreibig U (2004) Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15:1890–1896

    Article  CAS  Google Scholar 

  42. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482

    Article  CAS  Google Scholar 

  43. Haynes CL, McFarland AD, Zhao L, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342

    Article  CAS  Google Scholar 

  44. Zhao L, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem 107:7343–7350

    CAS  Google Scholar 

  45. Huang W, Qian W, El-Sayed MA (2005) The optically detected coherent lattice oscillations in silver and gold monolayer periodic nanoprism arrays: the effect of interparticle coupling. J Phys Chem B 109:18881–18888

    Article  CAS  Google Scholar 

  46. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou S, Schatz GC (2005) Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B 109:1079–1087

    Article  CAS  Google Scholar 

  47. Wang Y, Eswaramoorthy SK, Sherry LJ, Dieringer JA, Camden JP, Schatz GC, Van Duyne RP, Marks LD (2009) A method to correlate optical properties and structures of metallic nanoparticles. Ultramicroscopy 109:1110–1113

    Article  CAS  Google Scholar 

  48. Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366

    Article  CAS  Google Scholar 

  49. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Spectral response of plasmon resonant nanoparticles with a non-regular shape. Opt Express 6:213–219

    Article  CAS  Google Scholar 

  50. Kottmann JP, Martin OJF (2001) Plasmon resonant coupling in metallic nanowires. Opt Express 8:655–663

    Article  CAS  Google Scholar 

  51. Xu H (2004) Theoretical study of coated spherical metallic nanoparticles for single-molecule surface enhanced spectroscopy. Appl Phys Lett 85:5980–5982

    Article  CAS  Google Scholar 

  52. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  53. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  54. Fleischman M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  55. Gersten J, Nitzan A (1980) Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys 73:3023

    Article  CAS  Google Scholar 

  56. Schatz GC (1984) Theoretical studies of surface enhanced Raman scattering. Acc Chem Res 17:370–376

    Article  CAS  Google Scholar 

  57. Metiu H, Das P (1984) The electromagnetic theory of surface enhanced spectroscopy. Annu Rev Phys Chem 35:507–536

    Article  CAS  Google Scholar 

  58. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  59. Schatz GC, Van Duyne RP (2002) Electromagnetic mechanism of surface-enhanced spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York

    Google Scholar 

  60. Kerker M, Wang DS, Chew H (1980) Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles. Appl Optics 19:3373–3388

    Article  CAS  Google Scholar 

  61. Zou S, Schatz GC (2005) Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem Phys Lett 403:62–67

    Article  CAS  Google Scholar 

  62. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  63. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  64. Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) Surface-enhanced Raman excitation spectroscopy of a single Rhodamine 6G molecule. J Am Chem Soc 131:849–854

    Article  CAS  Google Scholar 

  65. Camden JP, Dieringer JA, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41:1653–1661

    Article  CAS  Google Scholar 

  66. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626

    Article  CAS  Google Scholar 

  67. Zeman EJ, Carron KT, Schatz GC, Van Duyne RP (1987) A surface enhanced resonance Raman study of cobalt phthalocyanine on rough Ag films: theory and experiment. J Chem Phys 87:4189

    Article  CAS  Google Scholar 

  68. McMahon JM, Gray SK, Schatz GC (2011) Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys Rev B 83:115428

    Article  CAS  Google Scholar 

  69. Barnes WL, Murray AW, Dintinger J, Devaux E, Lezec HJ, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film. Phys Rev Lett 92:107401

    Article  CAS  Google Scholar 

  70. Hessel A, Oliner AA (1965) A new theory of Wood’s anomalies on optical gratings. Appl Opt 4:1275–1297

    Article  Google Scholar 

  71. Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B 58:6779–6782

    Article  CAS  Google Scholar 

  72. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG, Schatz GC, Van Duyne RP (2005) Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J Phys Chem B 109:22351–22358

    Article  CAS  Google Scholar 

  73. Lee MH, Gao H, Henzie J, Odom TW (2007) Microscale arrays of nanoscale holes. Small 3:2029–2033

    Article  CAS  Google Scholar 

  74. Gordon R, Sinton D, Kavanagh KL, Brolo AG (2008) A new generation of sensors based on extraordinary optical transmission. Acc Chem Res 41:1049–1057

    Article  CAS  Google Scholar 

  75. Lee MH, Gao H, Odom TW (2009) Refractive index sensing using quasi one-dimensional nanoslit arrays. Nano Lett 9:2584–2588

    Article  CAS  Google Scholar 

  76. Stewart ME, Mack NH, Malyarchuck V, Soares JANT, Lee T-W, Gray SK, Nuzzo RG, Rogers JA (2006) Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci USA 103:17143–17148

    Article  CAS  Google Scholar 

  77. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20:4813–4815

    Article  CAS  Google Scholar 

  78. Reilly TH, Chang S-H, Corbman JD, Schatz GC, Rowlen KL (2007) Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays. J Phys Chem C 111:1689–1694

    Article  CAS  Google Scholar 

  79. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4:2015–2018

    Article  CAS  Google Scholar 

  80. Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127:14936–14941

    Article  CAS  Google Scholar 

  81. Porto JA, García-Vidal FJ, Pendry JB (1999) Transmission resonances on metallic gratings with very narrow slits. Phys Rev Lett 83:2845–2848

    Article  CAS  Google Scholar 

  82. Bravo-Abad J, Martín-Moreno L, García-Vidal FJ (2004) Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical-optics limit. Phys Rev E 69:026601

    Article  CAS  Google Scholar 

  83. Chang S-H, Gray SK, Schatz GC (2005) Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express 13:3150–3165

    Article  Google Scholar 

  84. Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang S-H, Gray SK, Schatz GC, Brown DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85:467–469

    Article  CAS  Google Scholar 

  85. Atkinson AL, McMahon JM, Schatz GC (2009) FDTD studies of metallic nanoparticle systems. In: Self organization of molecular systems, from molecules and clusters to nanotubes and proteins, NATO science for peace and security series A, chemistry and biology. Springer, Netherlands

    Google Scholar 

  86. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  87. Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 30:368–375

    Article  CAS  Google Scholar 

  88. Colas des Francs G, Girard C, Weeber J-C, Chicane C, David T, Dereux A, Peyrade D (2001) Optical analogy to electronic quantum corrals. Phys Rev Lett 86:4950–4953

    Article  CAS  Google Scholar 

  89. Crommie MF, Lutz CP, Eigler DM (1993) Confinement of electrons to quantum corrals on a metal surface. Science 262:218–220

    Article  CAS  Google Scholar 

  90. Chicanne C, David T, Quidant R, Weeber JC, Lacroute Y, Bourillot E, Dereux A, Colas des Francs G, Girard C (2002) Imaging the local density of states of optical corrals. Phys Rev Lett 88:097402

    Article  CAS  Google Scholar 

  91. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  92. Palomba S, Novotny L, Palmer RE (2008) Blue-shifted plasmon resonance of individual size-selected gold nanoparticles. Opt Commun 281:480–483

    CAS  Google Scholar 

  93. Anderegg M, Feuerbacher B, Fitton B (1971) Optically excited longitudinal plasmons in potassium. Phys Rev Lett 27:1565–1568

    Article  CAS  Google Scholar 

  94. Lindau I, Nilsson PO (1970) Experimental evidence for excitation of longitudinal plasmons by photons. Phys Lett A 31:352–353

    Article  Google Scholar 

  95. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934

    Article  CAS  Google Scholar 

  96. Ruppin R (1976) Optical properties of a metal sphere with a diffuse surface. J Opt Soc Am 66:449–453

    Article  CAS  Google Scholar 

  97. Apell P, Penn DR (1983) Optical properties of small metal spheres: surface effects. Phys Rev Lett 50:1316–1319

    Article  CAS  Google Scholar 

  98. Peng S, McMahon JM, Schatz GC, Gray SK, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances in colloidal nanoparticles (Submitted)

    Google Scholar 

  99. Agarwal GS, Pattanayak DN, Wolf E (1974) Electromagnetic fields in spatially dispersive media. Phys Rev B 10:1447–1475

    Article  Google Scholar 

  100. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  101. Dasgupta BB, Fuchs R (1981) Polarizability of a small sphere including nonlocal effects. Phys Rev B 24:554–561

    Article  CAS  Google Scholar 

  102. Chang R, Leung PT (2006) Nonlocal effects on optical and molecular interactions with metallic nanoshells. Phys Rev B 73:125438

    Article  CAS  Google Scholar 

  103. García de Abajo FJ (2008) Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J Phys Chem C 112:17983–17987

    Article  CAS  Google Scholar 

  104. Tserkezis C, Gantzounis G, Stefanou N (2008) Collective plasmonic modes in ordered assemblies of metallic nanoshells. J Phys Condens Matter 20:075232

    Article  CAS  Google Scholar 

  105. Pack A, Hietschold M, Wannemacher R (2001) Failure of local Mie theory: optical spectra of colloidal aggregates. Opt Commun 194:277–287

    Article  CAS  Google Scholar 

  106. Yannopapas V (2008) Non-local optical response of two-dimensional arrays of metallic nanoparticles. J Phys Condens Matter 20:325211

    Article  CAS  Google Scholar 

  107. Jones WE, Kliewer KL, Fuchs R (1969) Nonlocal theory of the optical properties of thin metallic films. Phys Rev 178:1201–1203

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Michael McMahon .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMahon, J.M. (2011). Introduction. In: Topics in Theoretical and Computational Nanoscience. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8249-0_1

Download citation

Publish with us

Policies and ethics