Skip to main content

Power and Energy Awareness

  • Chapter
  • First Online:
Real-Time Systems

Part of the book series: Real-Time Systems Series ((RTSS))

  • 8577 Accesses

Abstract

The increasing growth of energy-aware and power-aware computing is driven by the following concerns: The widespread use of mobile battery-powered devices, where the available time-for-use depends on the power consumption of the device The power dissipation within a large system-on-chip that leads to high internal temperatures and hot spots that have a negative impact on the chip’s reliability, possibly physically destroying the chip The high cost of the energy for the operation and cooling of large data centers, and finally The general concern about the carbon emissions of the ICT industry, which is of about the same magnitude as the carbon emissions of the air-transport industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benini, L. & G. DeMicheli. (2000). System Level Power Estimation: Techniques and Tools. ACM Trans. on Design Automation of Electronic Systems. Vol. 5(2). (pp. 115-192).

    Article  Google Scholar 

  2. Borkar, S. (2007). Thousand Core Chips–a Technology Perspective. Proc. of DAC 2007. ACM Press. (pp. 746-749).

    Google Scholar 

  3. Frank, D., et al. (2001). Device Scaling Limits of Si MOSFETs and Their Application Dependencies. Proc. of the IEEE. Vol. 89(3). (pp. 259-288).

    Article  Google Scholar 

  4. Heinzelman, W.R., A. Chandrakasan, & H. Balakrishan. (2000). Energy-efficient Communication Protocol for Wireless Microsensor Networks. Proc. of the 33rd Hawaii International Conference on System Science. IEEE Press. (pp. 3722-3725).

    Google Scholar 

  5. Herault, L. (2009). Holistic Approach for Future Energy-Efficient Cellular Networks. Proc. of the Second Japan-EU Symposium on the Future Internet. European Communities Brussels. (pp. 212-220).

    Google Scholar 

  6. Intel. (2009). Teraflop Research Chip. URL: http://techresearch.intel.com/articles/Tera-Scale/1449.htm.

    Google Scholar 

  7. ITRS Roadmap. (2009). International Technology Roadmap for Semiconductors, 2009 Edition. Executive Summary. Semiconductor Industry Association.

    Google Scholar 

  8. Keating, M., et al. (2007). Low Power Methodology Manual for Chip Design. Springer Verlag.

    Google Scholar 

  9. Lauwereins, R. (2006). Multi-core Platforms are a Reality...but where is the Software Support? Visual Presentation. IMEC. URL: http://www.mpsoc-forum.org/2006/slides/Lauwereins.pdf

    Google Scholar 

  10. Leverich, J., et al. (2008). Comparative Evaluation of Memory Models of Chip Multiprocessors. ACM Trans. on Architecture and Code Optimization, 2008. Vol. 5(3). (pp. 12.1-12.30).

    Google Scholar 

  11. Martin, T.L. & D.P. Siewiorek. (1999). The Impact of Battery Capacity and Memory Bandwidth on CPU Speed Setting: A Case Study. Proc. of ISLPED99. IEEE Press. (pp. 200-205).

    Google Scholar 

  12. OMG, MARTE. (2008). Modeling and Analysis of Real-time and Embedded Systems, Object Management Group.

    Google Scholar 

  13. Pauli, B., A. Meyna, & P. Heitmann. (1998). Reliability of Electronic Components and Control Units in Motor Vehicle Applications. Verein Deutscher Ingenieure (VDI). (pp. 1009-1024).

    Google Scholar 

  14. Pedram, M. & S. Nazarian. (2006). Thermal Modeling, Analysis and Management in VLSI Circuits: Principles and Methods. Proc. of the IEEE. Vol. 94(8). (pp. 1487-1501).

    Article  Google Scholar 

  15. Polleti, F., et al. (2007). Energy-Efficient Multiprocessor Systems-on-Chip for Embedded Computing: Exploring Programming Models and Their Architectural Support. Proc. of the IEEE, 2007. Vol. 56(5). (pp. 606-620).

    Google Scholar 

  16. Smith, J.S.S. (1997). Application Specific Integrated Circuits. Addision Wesley.

    Google Scholar 

  17. Soeleman, H., K. Roy, & B.C. Paul. (2001). Robust Subtreshold Logic for Ultra-Low Power Operation. IEEE Trans. on VLSI Systems. Vol. 9(1). (pp. 90-99).

    Article  Google Scholar 

  18. Vigras, W.J. (2010). Calculation of Semiconductor Failure Data. URL: http://rel.intersil.com/docs/rel/calculation_of_semiconductor_failure_rates.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Kopetz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kopetz, H. (2011). Power and Energy Awareness. In: Real-Time Systems. Real-Time Systems Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8237-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8237-7_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-8236-0

  • Online ISBN: 978-1-4419-8237-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics