Skip to main content

Analysis of Nonlinear Phase Noise in Single-Carrier and OFDM Systems

  • Chapter
  • First Online:
Impact of Nonlinearities on Fiber Optic Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

Abstract

The amplified spontaneous emission (ASE) of inline amplifiers gives rise to amplitude fluctuations of the optical field envelope and the fiber nonlinearity translates them into phase fluctuations. This is known as nonlinear phase noise. This type of noise is first studied by Gordon and Mollenauer [1] and hence, this noise is also called “Gordon–Mollenauer phase noise.” The nonlinear phase noise leads to performance degradation in fiberoptic systems based on phase-shift keying (PSK) or differential phase-shift keying (DPSK) [1–4]. Gordon and Molleneuer pointed out that two degrees of freedoms (DOFs) of the noise field are of importance [1]. These noise components have the same form as the signal pulse. One of the noise components is in phase with the signal and the other in quadrature. The in-phase component of the noise changes the amplitude of the signal pulse and hence, leads to energy change while the quadrature component leads to a linear phase shift. The energy change is translated into an additional phase shift due to fiber nonlinearity. Gordon and Mollenauer argued that the noise components other than the above-mentioned modes have less significant effects if the optical bandwidth is not too large and they derived a simple analytical expression for the variance of nonlinear phase noise by ignoring fiber dispersion. When the receiver filter bandwidth is larger than the signal bandwidth, it has been found that two DOFs are not sufficient to describe the noise process [5]. Analytical expressions for the probability density function of nonlinear phase noise have been derived in [6–8] by ignoring fiber dispersion. The interaction between the nonlinearity and ASE is the strongest when the dispersion is zero because of phase matching and therefore, the analyses of [1, 5–8] over estimate the impact of nonlinear phase noise. Attempts have been made to calculate the impact of nonlinearphase noise in the presence of dispersion [–23]. By assuming that the signal is CW and using the approach typically used in the study of modulational instability, it has been found that the variance of nonlinear phase noise becomes quite small in dispersion-managed transmission lines when the absolute dispersion of the transmission fiber becomes large [9]. Later in [10], the variance of nonlinear phase noise is calculated for a Gaussian pulse in a dispersion-managed transmission line and results showed that variance of nonlinear phase noise due to self-phase modulation (SPM) is quite small as compared to the case of no dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.P. Gordon, L.F. Mollenauer, Opt. Lett. 15(23), 1351–1353 (1990)

    Article  ADS  Google Scholar 

  2. H. Kim, A.H. Gnauck, IEEE Photon. Technol. Lett. 15, 320–322 (2003)

    Article  ADS  Google Scholar 

  3. P.J. Winzer, R.-J. Essiambre, J. Lightwave Technol. 24(12), 4711–4728 (2006)

    Article  ADS  Google Scholar 

  4. S.L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P.M. Krummrich, W. Sohler, G.-D.Khoe, H. de Waardt, IEEE J. Lightwave Technol. 24, 54–64 (2006)

    Article  ADS  Google Scholar 

  5. A. Mecozzi, J. Lightwave Technol. 12(11), 1993–2000 (1994)

    Article  ADS  Google Scholar 

  6. K-P. Ho, J. Opt. Soc. Am. B 20(9), 1875–1879 (2003)

    Google Scholar 

  7. K-P. Ho, Opt. Lett. 28(15), 1350–1352 (2003)

    Google Scholar 

  8. Mecozzi, Opt. Lett. 29(7), 673–675 (2004)

    Google Scholar 

  9. A.G. Green, P.P. Mitra, L.G.L. Wegener, Opt.Lett. 28, 2455–2457 (2003)

    Article  ADS  Google Scholar 

  10. S. Kumar, Opt. Lett. 30, 3278–3280 (2005)

    Article  ADS  Google Scholar 

  11. C.J. McKinstrie, C. Xie, T. Lakoba, Opt. Lett. 27, 1887–1889 (2002)

    Article  ADS  Google Scholar 

  12. C.J. McKinstrie, C. Xie, IEEE J. Sel. Top. Quant. Electron. 8, 616–625 (2002)

    Article  Google Scholar 

  13. M. Hanna, D. Boivin, P.-A. Lacourt, J.-P. Goedgebuer, J. Opt. Soc. Am. B 21, 24–28 (2004)

    Article  ADS  Google Scholar 

  14. K.-P. Ho, H.-C. Wang, IEEE Photon. Technol. Lett. 17, 1426–1428 (2005)

    Article  ADS  Google Scholar 

  15. K.-P. Ho, H.-C.Wang, Opt. Lett. 31, 2109–2111 (2006)

    Article  ADS  Google Scholar 

  16. F. Zhang, C.-A. Bunge, K. Petermann, Opt. Lett. 31(8), 1038–1040 (2006)

    Article  ADS  Google Scholar 

  17. P. Serena, A. Orlandini, A. Bononi, J. Lightwave Technol. 24(5), 2026–2037 (2006)

    Article  ADS  Google Scholar 

  18. X. Zhu, S. Kumar, X. Li, App. Opt. 45, 6812–6822 (2006)

    Article  ADS  Google Scholar 

  19. A. Demir, J. Lightwave Technol. 25(8) 2002–2032 (2007)

    Article  ADS  Google Scholar 

  20. S. Kumar, L. Liu, Opt. Exp. 15, 2166–2177 (2007)

    Article  ADS  Google Scholar 

  21. M. Faisal, A. Maruta, Opt. Comm. 282, 1893–1901 (2009)

    Article  ADS  Google Scholar 

  22. S. Kumar, J. Lightwave Technol. 27(21), 4722–4733 (2009)

    Article  ADS  Google Scholar 

  23. A. Bononi, P. Serena, N. Rossi, Optic. Fiber Tech. 16, 73–85 (2010)

    Article  ADS  Google Scholar 

  24. W. Shieh, C. Athaudage, Electron. Lett. 42(10), 587–588 (2006)

    Article  Google Scholar 

  25. A. Lowery, L. Du, J. Armstrong, J. Lightwave. Technol. 25(1), 131–138 (2007)

    Google Scholar 

  26. J. Armstrong, J. Lightwave Technol. 27(3), 189–204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, Y. Takatori, J. Lightwave Technol. 27(16), 3705–3713 (2009)

    Article  ADS  Google Scholar 

  28. S. Jansen, I. Morita, T. Schenk, H. Tanaka, J. Lightwave Technol. 27(3), 177–188 (2009)

    Article  ADS  Google Scholar 

  29. Y. Yang, Y. Ma, W. Shieh, IEEE Photon. Technol. Lett. 21(15), 1042–1044 (2009)

    Article  Google Scholar 

  30. A. Lowery, S. Wang, M. Premaratne, Opt. Express 15, 13282–13287 (2007)

    Article  ADS  Google Scholar 

  31. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Opt. Express 16, 15777–15810 (2008)

    Article  ADS  Google Scholar 

  32. A. Lowery, Opt. Express 15(20), 12965–12970 (2007)

    Article  ADS  Google Scholar 

  33. L. Du, A. Lowery, Opt. Express 16(24), 19920–19925 (2008)

    Article  ADS  Google Scholar 

  34. X. Liu, F. Buchali, Opt. Express 16(26), 21944–21957 (2008)

    Article  ADS  Google Scholar 

  35. X. Liu, F. Buchali, R. Tkach, J. Lightwave Technol. 27(16), 3632–3640 (2009)

    Article  ADS  Google Scholar 

  36. W. Shieh, H. Bao, Y. Tang, Opt. Express 16(2), 841–859 (2008)

    Article  ADS  Google Scholar 

  37. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Opt. Express 16, 880–889 (2008)

    Article  ADS  Google Scholar 

  38. E. Ip, J. Kahn, J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Article  ADS  Google Scholar 

  39. E. Yamazaki, H. Masuda, A. Sano, T. Yoshimatsu, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, M. Matsui, Y. Takatori, Multi-staged nonlinear compensation in coherent receiver for 16,340-km transmission of 111-Gb/s no-guard-interval co-OFDM, ECOC 2009, Paper 9.4.6, 2009

    Google Scholar 

  40. X. Zhu, S. Kumar, Opt. Express 18(7), 7347–7360 (2010)

    Article  Google Scholar 

  41. A. Hasegawa, Y. Kodama, Phys. Rev. Lett. 66(2), 161–164 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. G.P. Agrawal, Nonlinear Fiber Optics, chap. 3 (Academic, San Diego, 2007)

    Google Scholar 

  43. A. Mecozzi, C.B. Clausen, M. Shtaif, IEEE Photon. Technol. Lett. 12, 392–394 (2000)

    Article  ADS  Google Scholar 

  44. R.-J.Essiambre, G. Raybon, B. Mikkelsen, in Psuedo-Linear Transmission of High Speed TDM Signals:40 and 160 Gb/s, chap. 6, ed. by I.P. Kaminow, T. Li. Optical Fiber Telecommunications IV B (Academic, San Diego, 2002), pp. 232–304

    Google Scholar 

  45. S. Kumar, D. Yang, J. Lightwave Technol. 23(6), pp. 2073–2080 (2005)

    Article  ADS  Google Scholar 

  46. J. Li, E. Spiller, G. Biondini, Phys. Rev. A 75(5), 053818-1–053818-13 (2007)

    Google Scholar 

  47. S.K. Turitsyn, V.K. Mezentsev, JETP Lett. 67(9) 616–621 (1998)

    Article  Google Scholar 

  48. T.I. Lakoba, D.J. Kaup, Phys. Rev. E 58(5), 6728–6741 (1998)

    Article  ADS  Google Scholar 

  49. K. Inoue, Opt. Lett. 17, 801–803 (1992)

    Article  ADS  Google Scholar 

  50. M. Hanna, D. Boivin, P. Lacourt, J. Goedgebuer, J. Opt. Soc. Amer. B 21, 24–28 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kumar, S., Zhu, X. (2011). Analysis of Nonlinear Phase Noise in Single-Carrier and OFDM Systems. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics