Skip to main content

A Unified Theory of Intrachannel Nonlinearity in Pseudolinear Transmission

  • Chapter
  • First Online:
Impact of Nonlinearities on Fiber Optic Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

Abstract

The material of this chapter originates from a visit of the author the AT&T Laboratory in Red Bank, NJ in the summer of 2000. During that visit, the author was exposed to some experimental work on transmission using short pulses, which spread very rapidly upon propagation and for this reason were dubbed by Jay Wiesenfeld into “Tedons” from “to ted” which, according to Merriam-Webster’s Collegiate Dictionary, means “to spread or turn from the swath and scatter (as new-mown grass) for drying.” Tedons minimize the effects of nonlinearity by a quick spread, unlike solitons that instead resist to nonlinearity by balancing nonlinearity with dispersion, so that their shape does not change. He teamed up with Carl Clausen and Mark Shtaif and developed a perturbative theory, whose results were presented in a series of three papers [13]. The details of that theory and of its derivations were, however, never published in the open literature. The presentation of these details, together with some later improvements, is the purpose of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Mecozzi, C.B. Clausen, M. Shtaif, IEEE Photon. Technol. Lett.12, 392–394 (2000)

    Article  ADS  Google Scholar 

  2. A. Mecozzi, C.B. Clausen, M. Shtaif, IEEE Photon. Technol. Lett.12, 1633–1635 (2000)

    Article  ADS  Google Scholar 

  3. A. Mecozzi, C.B. Clausen, M. Shtaif, P. Sang-Gyu, A.H. Gnauck, IEEE Photon. Technol. Lett.13, 445–447 (2001)

    Article  ADS  Google Scholar 

  4. A. Mecozzi, M. Shtaif, IEEE Photon. Technol. Lett.14, 1029–1031 (2001)

    Article  ADS  Google Scholar 

  5. P.J. Winzer, R.-J. Essiambre, Proc. IEEE94, 952–985 (2006)

    Article  Google Scholar 

  6. H.A. Haus, J.A. Mullen, Phys. Rev.128, 2407–2413 (1962)

    Article  ADS  Google Scholar 

  7. C.E. Shannon, Bell. Syst. Tech. J.27, 379–423 (1948)

    MATH  MathSciNet  Google Scholar 

  8. R.J. Essiambre, G. Kramer, P.J. Winzer, G.J. Foschini, B. Goebel, J. Lightwave Technol.28, 662–701 (2010)

    Article  ADS  Google Scholar 

  9. P.P. Mitra, J.B. Stark, Nature411, 1027–1030 (2001)

    Article  ADS  Google Scholar 

  10. K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn, Phys. Rev. Lett.91, 203901 (2003)

    Article  ADS  Google Scholar 

  11. I. Djordjevic, B. Vasic, M. Ivkovic, I. Gabitov, J. Lightwave Technol.24, 3755–3763 (2005)

    Article  ADS  Google Scholar 

  12. R.-J. Essiambre, G.J. Foschini, G. Kramer, P.J. Winzer, Phys. Rev. Lett.101, 163901 (2008)

    Article  ADS  Google Scholar 

  13. R.I. Killey, H.J. Thiele, V. Mikhailov, P. Bayvel, IEEE Photon. Technol. Lett.13, 1624–1626 (2000)

    Article  ADS  Google Scholar 

  14. V.L. da Silva, Y. Silberberg, J.P. Heritage, E.W. Chase, M.A. Saifi, M.J. Andrejco, Opt. Lett.16, 1340–1342 (1991)

    Article  ADS  Google Scholar 

  15. V.L. da Silva, Y. Silberberg, J.P. Heritage, Opt. Lett.18, 580–582 (1993)

    Article  ADS  Google Scholar 

  16. D. Yang, S. Kumar, J. Lightwave Technol.27, 2916–2923 (2009)

    Article  ADS  Google Scholar 

  17. X. Wei, X. Liu, Opt. Lett.182300–2302 (2003)

    Article  ADS  Google Scholar 

  18. P.A. Humblet, M. Azizoglu, J. Lightwave Technol.9, 1576–1582 (1991)

    Article  ADS  Google Scholar 

  19. M. Pfennigbauer, M.M. Strasser, M. Pauer, P.J. Winzer, IEEE Photon. Technol. Lett.14, 831–833 (2002)

    Article  ADS  Google Scholar 

  20. J.P. Gordon, L.F. Mollenauer, Opt. Lett.15, 1351–1353 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mecozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mecozzi, A. (2011). A Unified Theory of Intrachannel Nonlinearity in Pseudolinear Transmission. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics