Skip to main content

Channel Capacity of Non-Linear Transmission Systems

  • Chapter
  • First Online:
Impact of Nonlinearities on Fiber Optic Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 7))

Abstract

Since their introduction in the late 1970s, the capacity of optical communication links has grown exponentially, fuelled by a series of key innovations including movement between the three telecommunication windows of 850 nm, 1,310 nm and 1,550 nm, distributed feedback laser, erbium-doped fibre amplifiers (EDFAs), dispersion-shifted and dispersion-managed fibre links, external modulation, wavelength division multiplexing, optical switching, forward error correction (FEC), Raman amplification, and most recently, coherent detection, electronic signal processing and optical orthogonal frequency division multiplexing (OFDM). Throughout this evolution, one constant factor has been the use of single-mode optical fibre, whose fundamental principles dated back to the 1800s, when Irish scientist, John Tyndall demonstrated in a lecture to the Royal Society in London that light could be guided through a curved stream of water [1]. Following many developments, including the proposal for waveguides by J.J. Thompson [2], the presentation of detailed calculations for dielectric waveguides by Snitzer [3], the proposal [4] and fabrication [5] of ultra low loss fibres, single-mode fibres were first adopted for non-experimental use in Dorset, UK in 1975, and are still in use today, despite the evolving designs to control chromatic dispersion and non-linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.S. Eve, C.H. Creasey, Life and Work of John Tyndall (Macmillan, London, 1945)

    Google Scholar 

  2. J.J. Thomson, Recent Researches (1893), http://digital.library.cornell.edu/cgi/t/text/text-idx?c=cdl;cc=cdl;view=toc;subview=short;idno=cdl022

  3. E. Snitzer, J. Opt. Soc. Am. 51, 491–498 (1961)

    Google Scholar 

  4. K.C. Kao, G.A. Hockham, Proc. IEE 113(7), 1151–1158 (1966)

    Google Scholar 

  5. F.P. Kapron, D.B. Keck, R.D. Maurer, Appl. Phys. Lett. 17, 423–425 (1970)

    ADS  Google Scholar 

  6. E.B. Desurvire, J. Lightwave Technol. 24(12), 4697–4710 (2006)

    ADS  Google Scholar 

  7. L. Wood, D. Blankenhdn, DESIDOC Bull. Inform. Technol. 15(4), 23–31 (1995)

    Google Scholar 

  8. IEEE P802.3av Task Force, 10 Gb/s Ethernet Passive Optical Network, http://www.ieee802.org/3/av, downloaded 20/4/2009

  9. J.M. Kahn, K.-P. Ho, IEEE J. Select. Top. Quant. Electron. 10(2), 259–272 (2004)

    Google Scholar 

  10. C.E. Shannon, Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  11. C.E. Shannon, W. Weaver, The Mathematical Theory of Communication (University of Illinois Press, IL, 1963)

    MATH  Google Scholar 

  12. H. Nyquist, Trans. Am. Inst. Elec. Eng. 47, 617–644 (1928)

    Google Scholar 

  13. M.E. McCarthy, J. Zhao, A.D. Ellis, P. Gunning, IEEE J. Lightwave Technol. 27, 5327–5335 (2009)

    ADS  Google Scholar 

  14. X. Liu, DSP-enhanced differential direct-detection for DQPSK and m-ary DPSK, European conference on optical communication (ECOC), paper 07.2.1, 2007; E.B. Desurvire, J. Lightwave Technol. 24(12), 4697–4710 (2006)

    Google Scholar 

  15. R.-J. Essiambre, Capacity limits of fiber-optic communication systems, in Proceedings of OFC 2009, San Diego, ISA, Paper OThL1, 2009

    Google Scholar 

  16. N. Kikuchi, K. Mandai, K. Sekine, S. Sasaki, J. Lightwave Technol. 26(1), 150–157 (2008)

    ADS  Google Scholar 

  17. J.M. Kahn, E. Ip, Principles of digital coherent receivers for optical communications, in Proceedings of OFC 2009, San Diego, ISA, Paper OTuG5, 2009

    Google Scholar 

  18. Ip, A.P.T. Lau, D.J.F. Barros, J.M. Khan, Opt. Express 16(2), 753–791 (2008)

    ADS  Google Scholar 

  19. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, Hoboken, 2002)

    Google Scholar 

  20. S. Haykin, Digital Communications (Wiley, NY, 1988)

    Google Scholar 

  21. N. Kikuchi, S. Sasaki, Improvement of tolerance to fibre non-linearity of incoherent multilevel signalling for WDM transmission with 10-Gbit/s OOK channels, in Proceedings of ECOC 2009, Vienna, Austria, Paper 8.4.1, 20–24 September 2009

    Google Scholar 

  22. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2000)

    Google Scholar 

  23. F. Gray, Pulse code communication, U.S. Patent 2,632,058, March 17, 1953 (filed Nov 1947)

    Google Scholar 

  24. M. Nakazawa, Challenges to FDM-QAM coherent transmission with ultrahigh spectral efficiency, in Proceedings of ECOC 2008, Brussels, Paper Tu1E1, 2008

    Google Scholar 

  25. S.Y. Chung, G.D. Forney, T.J. Richardson, R. Urbanke, IEEE Commun. Lett. 5(2), 58–60 (2001)

    Google Scholar 

  26. B. Zhou, L. Zhang, J. Kang, O. Huang, Y.Y. Tai, S. Lin, M. Xu, Non-binary LDPC codes vs. Reed-Solomon codes, in Proceedings of information theory and applications workshop 2008, San Diego, pp. 175–184, 2008

    Google Scholar 

  27. G.709: Interfaces for the Optical Transport Network (OTN), downloaded from http://www.itu.int/rec/T-REC-G.709/en.

  28. R.W. Chang, Bell Syst. Tech. J. 45, 1775–1796, (1966)

    Google Scholar 

  29. R.R. Mosier, R.G. Clabaugh, AIEE Trans. 76, 723–728 (1958)

    Google Scholar 

  30. H. Sanjoh, E. Yamada, Y Yoshikuni, Optical orthogonal frequency. division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz, in Proceedings of OFC’02, Anaheim, Paper ThD1, 2002

    Google Scholar 

  31. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, S. Matsuoka, R. Kudo, K. Ishihara, Y. Takatori, M. Mizoguchi, K. Okada, K. Hagimoto, H. Yamazaki, S. Kamei, H. Ishii, 13.4-Tb/s (134 ×111-Gb/s/ch) No-Guard-Interval Coherent OFDM Transmission over 3,600 km of SMF with 19-ps average PMD, in Proceedings of ECOC’08, Brussels, Paper Th3E1, 2008

    Google Scholar 

  32. K. Takiguchi, M. Oguma, T. Shibata, H Takahashi, Optical OFDM demultiplexer using silica PLC based optical FFT circuit, in Proceedings of OFC 2009, San Diego, Paper OWO3, 2009

    Google Scholar 

  33. A.D. Ellis, F.C.G. Gunning, Filter strategies for coherent WDM, in Proceedings of emerging technologies in optical sciences, Cork, 26–29 July 2004

    Google Scholar 

  34. A.D. Ellis, F.C.G. Gunning, Photon. Technol. Lett. 17(2), 504–506 (2005)

    ADS  Google Scholar 

  35. J. Zhao, A.D. Ellis, Performance improvement using a novel MAP detector in coherent WDM systems, in Proceedings of ECOC’08, Paper Tu1.D.2, 2008

    Google Scholar 

  36. T. Healy, F.C. Garcia Gunning, E. Pincemin, B. Cuenot, A.D. Ellis, 1,200 km SMF (100 km spans) 280 Gbit/s coherent WDM transmission using hybrid Raman/EDFA amplification, in ECOC’07, Berlin, Paper Mo1.3.5, 2007

    Google Scholar 

  37. A.J. Lowery, J. Armstrong, Opt. Express 14, 2079–2084 (2006)

    ADS  Google Scholar 

  38. B.J.C. Schmidt, Z. Zan, L.B. Du, A.J. Lowery, 100 Gbit/s transmission using single band direct detection optical OFDM, in Proceedings of OFC’09, San Diego, Paper PDPC4, 2009

    Google Scholar 

  39. I.B. Djordjevic, B. Vasic, IEEE Photon. Technol. Lett. 18(15), 1576–1578 (2006)

    ADS  Google Scholar 

  40. S.L. Jansen, I. Morita, H. Tanaka, 10-Gb/s OFDM with conventional DFB lasers, in Proceedings of ECOC’07, Berlin Paper Tu. 2.5.2, 2007

    Google Scholar 

  41. W. Shieh High spectral efficiency coherent optical OFDM for 1 Tb/s Ethernet transport, in Proceedings of OFC 2009, San Diego, Paper OWW1, 2009

    Google Scholar 

  42. S.L. Jansen, I. Morita, N. Takeda, H. Tanaka, 20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation, in Proceedings of optical fiber communication (OFC) conference 2007, Anaheim, Paper PDP 15, 2007

    Google Scholar 

  43. H. Takahashi, A. Al Amin, S.L. Jansen, I. Morita, H. Tanaka DWDM transmission with 7.0 bit/s/Hz spectral efficiency using 8 ×65. 1 Gbit∕s coherent PDM OFDM signals, in Proceedings of OFC 2009, San Diego, Paper PDPB7, 2009

    Google Scholar 

  44. X. Yi, W. Shieh, Y. Ma, Phase noise on coherent optical OFDM systems with 16-QAM and 64-QAM beyond 10 Gb/s, in Proceedings of ECOC’07, Berlin, Paper Tu5.2.3, 2007

    Google Scholar 

  45. T. Miki, H. Ishio, IEEE Trans. Commun. 26(7), 1082–1087 (1978)

    Google Scholar 

  46. A.D. Ellis, F.C.G. Gunning, B. Cuenot, T.C. Healy, E. Pincemin, M. Rukosueva, Towards 1TbE using coherent WDM, in Proceedings of OECC/ACOFT 2008, Sydney, Paper WeA-1, 2008

    Google Scholar 

  47. F.C.G. Gunning. T. Healy, X. Yang, A.D. Ellis, 0.6Tbit/s capacity and 2bit/s/Hz spectral efficiency at 42.6Gsymbol/s using a single DFB laser with NRZ coherent WDM and polarisation multiplexing, in CLEO Europe 2007, Munich, Germany, Paper CI8–5, 2007

    Google Scholar 

  48. Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, 1 Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access, in Proceedings of OFC’09, San Diego, Paper PDPC1, 2009

    Google Scholar 

  49. J. Armstrong, Electron. Lett. 38(5), 246–248 (2002)

    MathSciNet  Google Scholar 

  50. D.J. Malyon, T. Widdowson, E.G. Bryant, S.F. Carter, J.V. Wright, W.A. Stallard, Electron. Lett. 27(2), 120–121 (1991)

    Google Scholar 

  51. H.J. Thiele, R.I. Killey, P. Bayvel, Electron. Lett. 34(21), 2050–2051 (1998)

    Google Scholar 

  52. A.D. Ellis, W.A. Stallard, Four Wave mixing in ultra long transmission systems incorporating linear amplifiers, IEE Colloquium, 159 (1990), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=190875

    Google Scholar 

  53. R.-J. Essiambre, B. Mikkelsen, G. Raybon, Electron. Lett. 35(18), 1576–1578 (1999)

    Google Scholar 

  54. A.D. Ellis, J.D. Cox, D. Bird, J. Regnault, J.V. Wright, W.A. Stallard, Electron. Lett. 27(10), 878 (1991)

    Google Scholar 

  55. I. Morita, K. Tanaka, N. Edagawa, M. Suzuki, Impact of the dispersion map on long-haul 40 Gbith single-channel soliton transmission with periodic dispersion compensation, in Proceedings of OFC’99, San Diego, Paper FD1, 1999

    Google Scholar 

  56. P.V. Mamyshev, L.F. Mollenauer, Opt. Lett 21(6), 396–398 (1996)

    ADS  Google Scholar 

  57. N.J. Smith, N.J. Doran, Opt. Lett. 21(8), 570–572 (1996)

    ADS  Google Scholar 

  58. E Pincemin, A. Tan, A. Bezard, A. Tonello, S. Wabnitz, J-D Ania-Castañòn, S. Turitsyn, Opt. Express 14(25), 12049–12062 (2006)

    ADS  Google Scholar 

  59. P.P.Mitra, J.B.Stark, Nature 411, 1027–1030 (2001)

    ADS  Google Scholar 

  60. L.G.L. Wegener, b. M.L. Povinelli, A.G. Green, P.P. Mitra, J.B. Stark, P.B. Littlewood, Phys. D Nonlinear Phenomena 189(1–2), 81–99 (2004)

    MATH  ADS  Google Scholar 

  61. R.J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer, Exploring capacity limits of fibre-optic mommunication systems, in Proceedings of ECOC 2008, Brussels, Paper We1E1, 2008

    Google Scholar 

  62. K.J. Blow, N.J. Doran, IEEE Photon. Technol. Lett. 3(4), 369 (1991)

    ADS  Google Scholar 

  63. A. Altuncu, L. Noel, W.A. Pender, A.S. Siddiqui, T. Widdowson, A.D. Ellis, M.A. Newhouse, A.J. Antos, G. Kar, P.W. Chu, Electron. Lett 32(3), 233 (1996)

    Google Scholar 

  64. V. Karalekas, J.-D. Ania-Castañón, P. Harper, S.K. Turitsyn, Ultra-long Raman fibre laser transmission links (Invited), in Proceedings of the 11th international conference on transparent optical networks, Paper Tu.A.2.1, 2009

    Google Scholar 

  65. X. Liu, X. Wei, R.E. Slusher, C.J. McKinstrie, Opt. Lett. 27, 1616–1618 (2002)

    ADS  Google Scholar 

  66. K. Kikuchi, Opt. Express 16(2), 889–896 (2008)

    ADS  Google Scholar 

  67. L. F. Mollenauer, A. Grant, X. Liu, X. Wei, C. Xie, I. Kang, C. Doerr, Demonstration of 109 X 10G dense WDM over more than 18,000 km using novel, periodic-group-delay complemented dispersion compensation and dispersion managed solitons, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.4, 2003

    Google Scholar 

  68. C. Xu, X. Liu, X. Wei, IEEE J. Select. Top. Quant. Electron. 10(2), 281–293 (2004)

    Google Scholar 

  69. W. Pieper, C. Kurtze, R. Schnabel, D. Bruer, R. Ludwig, K. Petermann, Electron. Lett. 30(9), 724–725 (1992)

    ADS  Google Scholar 

  70. S. Watanabe, M. Shirasaki, J. Lightwave Technol. 14(3), 243–248 (1996)

    ADS  Google Scholar 

  71. K. Roberts, C. Li, L. Strawczynski, M. O’Sullivan, I. Hardcastle, Photon. Technol. Lett. 18(2), 403–405 (2006)

    ADS  Google Scholar 

  72. L.F. Mollenauer, J.P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Elsevier, MA, 2006)

    Google Scholar 

  73. C. Spagnol, W. Marnane, E Popovici, FPGA implementations of LDPC over GF (2 m) decoders, in Proceedings of 2007 IEEE workshop on signal processing. Institute of Electrical and Electronics Engineers, Shanghai, China, 2007, pp. 273–278, 2007

    Google Scholar 

  74. J. Tang, J. Lightwave Technol. 24(5), 2070–2075 (2006)

    ADS  Google Scholar 

  75. Y. Frignac, J.-C. Antona, S. Bigo, Enhanced analytical engineering rule for fast optimization dispersion maps in 40 Gbit/s-based transmission, Optical fiber communication conference, 2004. OFC 2004, vol. 1, 23–27 Feb 2004

    Google Scholar 

  76. R.W. Tkach, A.R. Chraplyvy, F. Forghieri, A.H. Gnauck, R. M. Derosier, J. Lightwave Technol. 13(5), 841–849 (1995)

    ADS  Google Scholar 

  77. A.J. Lowery, Opt. Express 15(20), 12965 (2007)

    ADS  Google Scholar 

  78. A. Mecozzi, M. Shtaif, Photon. Technol. Lett. 13, 1029–1031 (2001)

    ADS  Google Scholar 

  79. R.-J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer, E.C. Burrows, The capacity of fiber-optic communication systems, in Proceedings of OFC2008, San Diego, Paper OTuE1, 2008

    Google Scholar 

  80. B. Wu, E. Narimanov, Information capacity of nonlinear fiber-optical systems, in Proceedings of 2005 quantum electronics and laser science conference (QELS), Paper JThE74, 2005

    Google Scholar 

  81. K.S. Turitsyn, S.A. Derevyanko, I.V. Yurkevich, S.K. Turitsyn, Phys. Rev. Lett. 91, 203901 (2003)

    ADS  Google Scholar 

  82. M.S. Pinsker, Information and Information Stability of Random Variables and Processes (Holden Day, San Francisco, 1964), pp. 160–201

    MATH  Google Scholar 

  83. J. Tang, J. Lightwave Technol. 19, 1104–1109 (2000)

    ADS  Google Scholar 

  84. H. Goto, M. Yoshida, T. Omiya, K. Kasai, M. Nakazawa, IEICE Electron. Express 5(18), 776–781 (2008)

    Google Scholar 

  85. S.L. Jansen, D. van den Borne, C. Climent, M. Serbay C.-J. Weiske, H. Suche, P.M. Krummrich, S. Spalter, S. Calabro, N. Hecker-Denschlag, P. Leisching, W. Rosenkranz, W. Sohler, G.D. Khoe, T. Koonen, H. de Waardt, 10,200km 22 ×2 ×l0Gbit∕s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation, in Proceedings of OFC’05, Anaheim, Paper PDP28, 2005

    Google Scholar 

  86. E Ip, J.M Kahn, J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Google Scholar 

  87. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, G. Li, Opt. Express 16, 880–888 (2008)

    ADS  Google Scholar 

  88. L. Becouarn, G. Vareille, P. Pecci, J.F. Marcerou, 3Tbit/s transmission (301 DPSK channels at 10.709Gb/s) over 10270km with a record efficiency of 0.65(bit/s)/Hz, in Proceedings of ECOC 03, Rimini, Post-deadline Paper Th4.3.2, 2003

    Google Scholar 

  89. I. Morita, N. Edagawa, 50GHz-spaced 64 ×42. 7 Gbit∕s transmission over 8200km using pre-filtered CS-RZ DPSK signal and EDFA repeaters, in Proceedings of ECOC’03, Rimini, Paper Th4.3.1, 2003

    Google Scholar 

  90. A.D. Ellis, D.A. Cleland, Electron. Lett. 28(4), 405 (1992)

    Google Scholar 

  91. M. Jinno, M. Abe, Electron. Lett. 28(14), 1350 (1992)

    Google Scholar 

  92. Y. Ueno, S. Nakamura, K. Tajima, IEEE Photon. Technol. Lett. 13(5), 469–471 (2001)

    ADS  Google Scholar 

  93. R.J. Manning, A.D. Ellis, A.J. Poustie, K.J. Blow, J. Opt. Soc. Am. B 14, 3204–3216 (1997)

    ADS  Google Scholar 

  94. K. Croussore, C. Kim, G. Li, Opt. Lett. 29, 2357–2359 (2004)

    ADS  Google Scholar 

  95. L.F. Mollenauer, P.V. Mamyshev, M.J. Neubelt, Electron. Lett. 32(5), 471 (1996)

    Google Scholar 

  96. P.V. Mamyshev, All-optical data regeneration based on self-phase modulation effect, in Proceedings of ECOC, vol. 1, pp. 475–476, 1998

    Google Scholar 

  97. B. Cuenot, A.D. Ellis, Opt. Express, 15(18), 11492–11499 (2007)

    ADS  Google Scholar 

  98. P. Petropoulos, L. Provost, F. Parmigiani, C. Kouloumentas, C. Finot, K. Mukasa, P. Vorreau, I. Tomkos, S. Sygletos, W. Freude, J. Leuthold, A. D. Ellis, D.J. Richardson, Simultaneous 2R regeneration of WDM signals in a single optical fibre, IEEE/LEOS winter topical meeting series, pp 252–253, 2009

    Google Scholar 

  99. O. Leclerc, E. Desurvire, O. Audouin, Opt. Fiber Technol. 3(2), 97–116 (1997)

    ADS  Google Scholar 

  100. I.Y. Khrushchev, I.D. Phillips, A.D. Ellis, R.J. Manning, D. Nesset, D.G. Moodie, R.V. Penty, I.H. White, Electron. Lett. 35(14), 1183–1185 (1999)

    Google Scholar 

  101. M. Nakazawa, K. Suzuki, H. Kubota, A. Sahara, E. Yamada, Electron. Lett. 34(1), 103–104 (1998)

    Google Scholar 

  102. J.M.C. Boggio, C. Lundström, J. Yang, H. Sunnerud, P.A. Andrekson, Double-pumped FOPA with 40 dB flat gain over 81 nm bandwidth, in Proceedings of ECOC 2008, Brussels, Paper Tu.3B5, 2008

    Google Scholar 

  103. P.J. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, P.St.J. Russell, Opt. Exp. 13, 236–244 (2005)

    ADS  Google Scholar 

  104. R.M. Percival, D. Szebesta, C.P. Seltzer, S.D. Perin, S.T. Devey, M. Louka, J. Quant. Electron. 31(3), 489–493 (1995)

    Google Scholar 

  105. A. Krier, Y. Mao, Infrared Phys. Technol. 38(7), 397–403 (1997)

    ADS  Google Scholar 

  106. Z. Tong, Q. Yang, Y. Ma, W. Shieh, 21.4 Gb/s coherent optical OFDM transmission over 200 km multimode fiber, in Proceedings of OECC/ACOFT 2008, Syndey, Paper PDP5, 2008

    Google Scholar 

  107. C.P. Tsekrekos, A. Martinez, F.M. Huijskens, A.M.J. Koonen, IEEE Photon. Technol. Lett. 18, 2359–2361 (2006)

    ADS  Google Scholar 

  108. E. Yamazaki, F. Inuzuka, K. Yonenaga, A. Takada, M. Koga, IEEE Photon. Technol. Lett. 19(9), 9–11 (2007)

    ADS  Google Scholar 

  109. H.A. Haus, Y. Yamamoto, IEEE J. Quant. Electron. QE-23, 212–221 (1987)

    ADS  Google Scholar 

  110. S. Oda, H. Sunnerud, P.A. Andrekson, Opt. Lett. 32(13), 1776–1778 (2007)

    ADS  Google Scholar 

  111. G. Charlet, M. Salsi, H. Mardoyan, P. Tran, J. Renaudier, S. Bigo, M. Astruc, P. Sillard, L. Provost, F. Cérou, Transmission of 81 channels at 40Gbit/s over a transpacific-distance erbium-only link, using PDM-BPSK modulation, coherent detection, and a new large effective area fibre, in Proceedings of ECOC’08, Brussels, Paper Th3E3, 2008

    Google Scholar 

  112. S. Ten, Advanced fibers for submarine and long-haul applications, in Proceedings of LEOS 2004, vol. 2, pp. 543–544, San Francisco, Paper WJ2, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Ellis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ellis, A.D., Zhao, J. (2011). Channel Capacity of Non-Linear Transmission Systems. In: Kumar, S. (eds) Impact of Nonlinearities on Fiber Optic Communications. Optical and Fiber Communications Reports, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8139-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8139-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8138-7

  • Online ISBN: 978-1-4419-8139-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics