Skip to main content

EGFR Signaling and Radiation

  • Chapter
  • First Online:
Molecular Determinants of Radiation Response

Part of the book series: Current Cancer Research ((CUCR))

  • 653 Accesses

Abstract

The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase that is over expressed or mutated in a broad spectrum of epithelial cancers and serves as an important regulator of oncogenesis. Aberrant EGFR expression and activity have been associated with uncontrolled cancer cell proliferation and survival. Therefore, EGFR has been considered an attractive target in cancer therapy, including studies investigating the ability of EGFR signaling to modulate radiation response. Two primary classes of EGFR inhibitors have been developed in recent years: monoclonal antibodies (mAbs) and tyrosine kinase inhibitors. The most mature clinical data to date derives from studies with the anti-EGFR mAb inhibitor cetuximab combined with radiation in head and neck squamous cell carcinoma (HNSCC) that has provided a new therapeutic option for this disease. Postulated mechanisms of interaction between these two modalities include effects on cell cycle distribution, apoptosis, tumor cell repopulation, DNA damage/repair, and impact on tumor vasculature. The improvement in tumor control rates and overall survival in HNSCC has prompted investigation of this approach in other tumor types. Here we review pertinent literature regarding the interaction of anti-EGFR therapies with radiation, including preclinical and clinical trial data reflecting promising future directions for this approach.

Disclosure: PMH has held active laboratory research agreements with industry sponsors developing EGFR inhibitors including Amgen, AstraZeneca, Genentech, and ImClone within the last 5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelstein DJ, Saxton JP, Rybicki LA et al (2008) Concurrent chemoradiotherapy and gefitinib for locoregionally advanced head and neck squamous cell cancer. Presented at the 7th International Conference on head and neck cancer, San Francisco, CA, Abstr S198

    Google Scholar 

  • Ahmed SM, Cohen EE, Haraf DJ et al (2007) Updated results of phase II trial integrating ­gefitinib (G.) into concurrent chemoradiation (CRT) followed by G. adjuvant therapy for locally advanced head and neck cancer (HNC). ASCO Meet Abstr 6028

    Google Scholar 

  • Ahsan A, Hiniker SM, Davis MA et al (2009) Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization. Cancer Res 69:5108–14

    Article  PubMed  CAS  Google Scholar 

  • Akimoto T, Hunter NR, Buchmiller L et al (1999) Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer Res 5:2884–90

    PubMed  CAS  Google Scholar 

  • Akita RW, Sliwkowski MX (2003) Preclinical studies with erlotinib (Tarceva). Semin Oncol 30:15–24

    Article  PubMed  CAS  Google Scholar 

  • Allegra CJ, Jessup JM, Somerfield MR et al (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27:2091–6

    Article  PubMed  Google Scholar 

  • Al-Nedawi K, Meehan B, Kerbel RS et al (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A 106:3794–9

    Article  PubMed  Google Scholar 

  • Ang KK, Berkey BA, Tu X et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62:7350–6

    PubMed  CAS  Google Scholar 

  • Ang KK, Andratschke NH, Milas L (2004) Epidermal growth factor receptor and response of head-and-neck carcinoma to therapy. Int J Radiat Oncol Biol Phys 58:959–65

    Article  PubMed  CAS  Google Scholar 

  • Argiris AE, Gibson MK, Heron DE et al (2008) Phase II trials of neoadjuvant docetaxel (T), ­cisplatin (P), and cetuximab followed by concurrent radiation (X), P, and E in locally advanced head and neck cancer (HNC). ASCO Meet Abstr 6002

    Google Scholar 

  • Bandyopadhyay D, Mandal M, Adam L et al (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273:1568–73

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Dorr W, Petersen C et al (2003) Repopulation during fractionated radiotherapy: much has been learned, even more is open. Int J Radiat Biol 79:465–7

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Krause M, Zips D et al (2004) Molecular targeting in radiotherapy of lung cancer. Lung Cancer 45:S187–97

    Article  PubMed  Google Scholar 

  • Baumann M, Krause M, Dikomey E et al (2007) EGFR-targeted anti-cancer drugs in radiotherapy: preclinical evaluation of mechanisms. Radiother Oncol 83:238–48

    Article  PubMed  CAS  Google Scholar 

  • Benavente S, Huang S, Armstrong EA et al (2009) Establishment and characterization of a model of acquired resistance to epidermal growth factor receptor targeting agents in human cancer cells. Clin Cancer Res 15:1585–92

    Article  PubMed  CAS  Google Scholar 

  • Bentzen SM, Atasoy BM, Daley FM et al (2005) Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial. J Clin Oncol 23:5560–7

    Article  PubMed  CAS  Google Scholar 

  • Bernier J, Bentzen SM, Vermorken JB (2009) Molecular therapy in head and neck oncology. Nat Rev Clin Oncol 6:266–77

    Article  PubMed  CAS  Google Scholar 

  • Bianco C, Tortora G, Bianco R et al (2002) Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8:3250–8

    PubMed  CAS  Google Scholar 

  • Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–78

    Article  PubMed  CAS  Google Scholar 

  • Bonner JA, Harari PM, Giralt J et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-Year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–8

    Article  PubMed  CAS  Google Scholar 

  • Burtness B, Goldwasser MA, Flood W et al (2005) Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 23:8646–54

    Article  PubMed  Google Scholar 

  • Busse D, Doughty RS, Ramsey TT et al (2000) Reversible G1 arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27KIP1 independent of MAPK activity. J Biol Chem 275:6987–95

    Article  PubMed  CAS  Google Scholar 

  • Camp ER, Summy J, Bauer TW et al (2005) Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 11:397–405

    PubMed  CAS  Google Scholar 

  • Campiglio M, Locatelli A, Olgiati C et al (2004) Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level. J Cell Physiol 198:259–68

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia GJ, Pore N, Tsai JH et al (2009) Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLoS One 4:e6539

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A, Dicker A, Mehta M (2004) The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int J Radiat Oncol Biol Phys 58:927–31

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Kane M, Song J et al (2007) Phase I trial of gefitinib in combination with radiation or chemoradiation for patients with locally advanced squamous cell head and neck cancer. J Clin Oncol 25:4880–6

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan P, Huang S, Vallabhaneni G et al (2005) mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by Erlotinib (Tarceva). Cancer Res 65:3328–35

    PubMed  CAS  Google Scholar 

  • Chung CH, Mirakhur B, Chan E et al (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–17

    Article  PubMed  CAS  Google Scholar 

  • Cohen EE et al (2005) Integration of gefitinib (G.), in to a concurrent chemoradiation (CRT) regimen followed by G. adjuvant therapy in patients with locally advanced head and neck cancer (HNC) – a phase II trial. ASCO Meet Abstr 23

    Google Scholar 

  • Cohen EEW, Rosen F, Stadler WM et al (2003) Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 21:1980–7

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Sato M, Story MD et al (2006) Non-small cell lung cancers with kinase domain mutations in the epidermal growth factor receptor are sensitive to ionizing radiation. Cancer Res 66:9601–8

    Article  PubMed  CAS  Google Scholar 

  • Das AK, Chen BP, Story MD et al (2007) Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res 67:5267–74

    Article  PubMed  CAS  Google Scholar 

  • Dassonville O, Formento JL, Francoual M et al (1993) Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol 11:1873–8

    PubMed  CAS  Google Scholar 

  • Dassonville O, Bozec A, Fischel JL et al (2007) EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors: similarities and differences. Crit Rev Oncol Hematol 62:53–61

    Article  PubMed  Google Scholar 

  • Dent P, Reardon DB, Park JS et al (1999) Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell 10:2493–506

    PubMed  CAS  Google Scholar 

  • Di Gennaro E, Barbarino M, Bruzzese F et al (2003) Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (‘Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J Cell Physiol 195:139–50

    Article  PubMed  CAS  Google Scholar 

  • Dings RPM, Loren M, Heun H et al (2007) Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13:3395–402

    Article  PubMed  CAS  Google Scholar 

  • Dittmann K, Mayer C, Fehrenbacher B et al (2005a) Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 280:31182–9

    Article  PubMed  CAS  Google Scholar 

  • Dittmann K, Mayer C, Rodemann H (2005b) Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol 76:157–61

    Article  PubMed  CAS  Google Scholar 

  • Dittmann K, Mayer C, Kehlbach R et al (2008) Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 7:69

    Article  PubMed  CAS  Google Scholar 

  • Dittmann K, Mayer C, Kehlbach R et al (2009) Radiation-induced lipid peroxidation activates src kinase and triggers nuclear EGFR transport. Radiother Oncol 92:379–82

    Article  PubMed  CAS  Google Scholar 

  • Doss HH et al (2006) Induction chemotherapy + gefinitib followed by concurrent chemotherapy/radiation therapy/gefitinib for patients (pts) with locally advanced squamous cell carcinoma of the head and neck: a phase I/II trial of the Minnie Pearl Cancer Research Network. ASCO Meet Abstr 24

    Google Scholar 

  • Engelman JA, Janne PA (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 14:2895–9

    Article  PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–43

    Article  PubMed  CAS  Google Scholar 

  • Fenton BM, Paoni SF, Ding I (2004) Effect of VEGF receptor-2 antibody on vascular function and oxygenation in spontaneous and transplanted tumors. Radiother Oncol 72:221–30

    Article  PubMed  CAS  Google Scholar 

  • Friedmann BJ, Caplin M, Savic B et al (2006) Interaction of the epidermal growth factor receptor and the DNA-dependent protein kinase pathway following gefitinib treatment. Mol Cancer Ther 5:209–18

    Article  PubMed  CAS  Google Scholar 

  • Frolov A, Schuller K, Tzeng CW et al (2007) ErbB3 expression and dimerization with EGFR influence pancreatic cancer cell sensitivity to erlotinib. Cancer Biol Ther 6:548–54

    Article  PubMed  CAS  Google Scholar 

  • Gan HK, Lappas M, Cao DX et al (2009) Targeting a unique EGFR epitope with monoclonal antibody 806 activates NFkB and initiates tumor vascular normalization. J Cell Mol Med 13:3993–4001

    Article  PubMed  Google Scholar 

  • Giralt J, de las Heras M, Cerezo L et al (2005) The expression of epidermal growth factor receptor results in a worse prognosis for patients with rectal cancer treated with preoperative radiotherapy: a multicenter, retrospective analysis. Radiother Oncol 74:101–8

    Article  PubMed  CAS  Google Scholar 

  • Govindan R, Bogarts X, Wang L et al (2009) Phase II study of pemetrexed, carboplatin, and thoracic radiation with or without cetuximab in patients with locally advanced unresectable non-small cell lung cancer: CALGB 30407. ASCO Abstr 2009

    Google Scholar 

  • Grandis JR, Melhem MF, Gooding WE et al (1998) Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90:824–32

    Article  Google Scholar 

  • Guillamo JS, de Bouard S, Valable S et al (2009) Molecular mechanisms underlying effects of epidermal growth factor receptor inhibition on invasion, proliferation, and angiogenesis in experimental glioma. Clin Cancer Res 15:3697–704

    Article  PubMed  CAS  Google Scholar 

  • Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11:689–708

    Article  PubMed  CAS  Google Scholar 

  • Harari PM (2005) Promising new advances in head and neck radiotherapy. Ann Oncol 16 Suppl 6:vi13–9

    Article  PubMed  Google Scholar 

  • Harari PM, Huang S (2001) Radiation response modification following molecular inhibition of epidermal growth factor receptor signaling. Semin Radiat Oncol 11:281–9

    Article  PubMed  CAS  Google Scholar 

  • Harari PM, Huang S (2004a) Combining EGFR inhibitors with radiation or chemotherapy: will preclinical studies predict clinical results? Int J Radiat Oncol Biol Phys 58:976–83

    Article  PubMed  CAS  Google Scholar 

  • Harari PM, Huang SM (2004b) Searching for reliable epidermal growth factor receptor response predictors: commentary Re M. K. Nyati et al., radiosensitization by Pan-ErbB inhibitor CI-1033 in vitro and in vivo. Clin Cancer Res 10:691–700. Clin Cancer Res 10:428–32

    Article  PubMed  CAS  Google Scholar 

  • Harari PM, Huang S (2006) Radiation combined with EGFR signal inhibitors: head and neck cancer focus. Semin Radiat Oncol 16:38–44

    Article  PubMed  Google Scholar 

  • Harari PM, Allen GW, Bonner JA (2007) Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol 25:4057–65

    Article  PubMed  CAS  Google Scholar 

  • Harrington KJ, Bourhis J, Nutting CM et al (2006) A phase I, open-label study of lapatinib plus chemoradiation in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) ASCO Meet Abstr 5553

    Article  PubMed  CAS  Google Scholar 

  • Herchenhorn D (2005) Phase II study of erlotinib combined with cisplatin and radiotherapy of locally advanced squamous cell carcinoma of the head and neck (SCCHN). ASCO Meet Abstr 25

    Google Scholar 

  • Hirata A, Ogawa S, Kometani T et al (2002) ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62:2554–60

    PubMed  CAS  Google Scholar 

  • Huang SM, Harari PM (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 6:2166–74

    PubMed  CAS  Google Scholar 

  • Huang S, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–40

    PubMed  CAS  Google Scholar 

  • Huang S, Li J, Armstrong EA et al (2002a) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62:4300–6

    PubMed  CAS  Google Scholar 

  • Huang S, Li J, Harari PM (2002b) Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Mol Cancer Ther 1:507–14

    PubMed  CAS  Google Scholar 

  • Huang S, Armstrong EA, Benavente S et al (2004) Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 64:5355–62

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SR (2005) EGF receptor inhibition: attacks on multiple fronts. Cancer Cell 7:287–8

    Article  PubMed  CAS  Google Scholar 

  • Iivanainen E, Lauttia S, Zhang N et al (2009) The EGFR inhibitor gefitinib suppresses recruitment of pericytes and bone marrow-derived perivascular cells into tumor vessels. Microvasc Res 78:278–85

    Article  PubMed  CAS  Google Scholar 

  • Inoue A, Kobayashi K, Usui K et al (2009) First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy. J Clin Oncol 27:1394–400

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo ML, Leon Z, Grothe S et al (2006) Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting. Exp Cell Res 312:2778–90

    Article  PubMed  CAS  Google Scholar 

  • Jensen AD, Munter MW, Bischoff H et al (2006) Treatment of non-small cell lung cancer with intensity-modulated radiation therapy in combination with cetuximab: the NEAR protocol (NCT00115518). BMC Cancer 6:122

    Article  PubMed  CAS  Google Scholar 

  • Jhawer M, Goel S, Wilson AJ et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–61

    Article  PubMed  CAS  Google Scholar 

  • Jimeno A, Rubio-Viqueira B, Amador ML et al (2005) Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer Res 65:3003–10

    PubMed  CAS  Google Scholar 

  • Jones HE, Goddard L, Gee JMW et al (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814

    Article  PubMed  CAS  Google Scholar 

  • Karashima T, Sweeney P, Slaton JW et al (2002) Inhibition of angiogenesis by the antiepidermal growth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing orthotopically in nude mice. Clin Cancer Res 8:1253–64

    PubMed  CAS  Google Scholar 

  • Kavanagh BD, Lin PS, Chen P (1995) Radiation-induced enhanced proliferation of human squamous cancer cells in vitro: a release from inhibition by epidermal growth factor. Clin Cancer Res 1:1557–62

    PubMed  CAS  Google Scholar 

  • Ko JC, Hong JH, Wang LH et al (2008) Role of repair protein Rad51 in regulating the response to gefitinib in human non-small cell lung cancer cells. Mol Cancer Ther 7:3632–41

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Ostermann G, Petersen C et al (2005) Decreased repopulation as well as increased reoxygenation contribute to the improvement in local control after targeting of the EGFR by C225 during fractionated irradiation. Radiother Oncol 76:162–7

    Article  PubMed  CAS  Google Scholar 

  • Kruser TJ, Armstrong EA, Ghia AJ et al (2008) Augmentation of radiation response by panitumumab in models of upper aerodigestive tract cancer. Int J Radiat Oncol Biol Phys 72:534–42

    Article  PubMed  CAS  Google Scholar 

  • Kuhnt T et al (2008) Concomitant hyperfractionated and concurrent cetuximab for locoregionally advanced squamous cell head and neck cancer: a phase I dose escalation trial. ASCO Meet Abstr 26

    Google Scholar 

  • Kurai J, Chikumi H, Hashimoto K et al (2007) Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res 13:1552–61

    Article  PubMed  CAS  Google Scholar 

  • Lacouture ME (2006) Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 6:803–12

    Article  PubMed  CAS  Google Scholar 

  • Lammering G, Hewit TH, Holmes M et al (2004) Inhibition of the type III epidermal growth factor receptor variant mutant receptor by dominant-negative EGFR-CD533 enhances malignant glioma cell radiosensitivity. Clin Cancer Res 10:6732–43

    Article  PubMed  CAS  Google Scholar 

  • Li C, Iida M, Dunn EF et al (2009) Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene 28:3801–13

    Article  PubMed  CAS  Google Scholar 

  • Lo HW, Xia W, Wei Y et al (2005) Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res 65:338–48

    PubMed  CAS  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–39

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Waxman DJ (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  CAS  Google Scholar 

  • Ma J, Waxman DJ (2008) Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7:3670–84

    Article  PubMed  CAS  Google Scholar 

  • Matar P, Rojo F, Cassia R et al (2004) Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 10:6487–501

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn J (2003) Antibody-mediated EGF receptor blockade as an anticancer therapy: from the laboratory to the clinic. Cancer Immunol Immunother 52:342–6

    PubMed  Google Scholar 

  • Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–99

    Article  PubMed  CAS  Google Scholar 

  • Merlano MC et al (2007) Cetuximab (C-mab) and chemo-radiation (CT-RT) for loco-regional advanced squamous cell carcinoma of the head and neck (HNC): a phase II study. ASCO Meet Abstr 25

    Google Scholar 

  • Meyn RE, Munshi A, Haymach JV et al (2009) Receptor signaling as a regulatory mechanism of DNA repair. Radiother Oncol 92:316–22

    Article  PubMed  CAS  Google Scholar 

  • Milas L, Mason K, Hunter N et al (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6:701–8

    PubMed  CAS  Google Scholar 

  • Milas L, Fan Z, Andratschke NH et al (2004) Epidermal growth factor receptor and tumor response to radiation: in vivo preclinical studies. Int J Radiat Oncol Biol Phys 58:966–71

    Article  PubMed  CAS  Google Scholar 

  • Morgillo F, Kim WY, Kim ES et al (2007) Implication of the insulin-like growth factor-IR pathway in the resistance of non-small cell lung cancer cells to treatment with gefitinib. Clin Cancer Res 13:2795–803

    Article  PubMed  CAS  Google Scholar 

  • Murata R, Nishimura Y, Hiraoka M (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 37:1107–13

    Article  PubMed  CAS  Google Scholar 

  • Nasu S, Ang KK, Fan Z et al (2001) C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int J Radiat Oncol Biol Phys 51:474–7

    Article  PubMed  CAS  Google Scholar 

  • Normanno N, Tejpar S, Morgillo F et al (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol 6:519–27

    Article  PubMed  CAS  Google Scholar 

  • Nyati MK, Morgan MA, Feng FY et al (2006) Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer 6:876–85

    Article  PubMed  CAS  Google Scholar 

  • O’Neil BH, Allen R, Spigel DR et al (2007) High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol 25:3644–8

    Article  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–500

    Article  PubMed  CAS  Google Scholar 

  • Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101:13306–11

    Article  PubMed  CAS  Google Scholar 

  • Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:1–11

    Article  CAS  Google Scholar 

  • Perrotte P, Matsumoto T, Inoue K et al (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogensis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257–64

    PubMed  CAS  Google Scholar 

  • Petersen C, Eicheler W, Frommel A et al (2003) Proliferation and micromilieu during fractionated irradiation of human FaDu squamous cell carcinoma in nude mice. Int J Radiat Biol 79:469–77

    Article  PubMed  CAS  Google Scholar 

  • Pore N, Jiang Z, Gupta A et al (2006) EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res 66:3197–204

    Article  PubMed  CAS  Google Scholar 

  • Prados MD, Chang SM, Butowski N et al (2009) Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 27:579–84

    Article  PubMed  CAS  Google Scholar 

  • Prewett M, Rockwell P, Rose C et al (1996) Altered cell cycle distribution and cyclin-CDK protein expression in A431 epidermoid carcinoma cells treated with doxorubicin and a chimeric monoclonal antibody to epidermal growth factor receptor. Mol Cell Differ 4:167–86

    CAS  Google Scholar 

  • Psyrri A, Yu Z, Weinberger PM et al (2005) Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 11:5856–62

    Article  PubMed  CAS  Google Scholar 

  • Psyrri A, Egleston B, Weinberger P et al (2008) Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiol Biomarkers Prev 17:1486–92

    Article  PubMed  CAS  Google Scholar 

  • Qayum N, Muschel RJ, Im JH et al (2009) Tumor vascular changes mediated by inhibition of oncogenic signaling. Cancer Res 69:6347–54

    Article  PubMed  CAS  Google Scholar 

  • Ramalingam S, Forster J, Naret C et al (2008) Dual inhibition of the epidermal growth factor receptor with cetuximab, an IgG1 monoclonal antibody, and gefitinib, a tyrosine kinase inhibitor, in patients with refractory non-small cell lung cancer (NSCLC): a phase I study. J Thorac Oncol 3:258–64

    Article  PubMed  Google Scholar 

  • Regales L, Gong Y, Shen R et al (2009) Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 119:3000–10

    PubMed  CAS  Google Scholar 

  • Riesterer O, Mason KA, Raju U et al (2009) Enhanced response to C225 of A431 tumor xenografts growing in irradiated tumor bed. Radiother Oncol 92:383–7

    Article  PubMed  CAS  Google Scholar 

  • Robert F, Ezekiel MP, Spencer SA et al (2001) Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 19:3234–43

    PubMed  CAS  Google Scholar 

  • Rueda A et al (2007) Gefitnib plus concomitant boost accelerated radiation (AFX-CB) and concurrent weekly cisplatin for locally advanced unresectable squamous cell head and neck carcinomas (SCCHN): a phase II study. ASCO Meet Abstr 25

    Google Scholar 

  • Safran H, Suntharalingam M, Dipetrillo T et al (2008) Cetuximab with concurrent chemoradiation for esophagogastric cancer: assessment of toxicity. Int J Radiat Oncol Biol Phys 70:391–5

    Article  PubMed  CAS  Google Scholar 

  • Saltz LB, Meropol NJ, Loehrer PJ et al (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–8

    Article  PubMed  CAS  Google Scholar 

  • Savvides P et al (2008) Phase II study of bevacizumab with docetaxel and radiation in locally advanced head and neck squamous cell cancer. Presented at the 7th International Conference on head and neck cancer, San Francisco, CA July 19–23 2008

    Google Scholar 

  • Schmidt-Ullrich RK, Mikkelsen RB, Dent P et al (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15:1191–7

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Contessa JN, Lammering G et al (2003) ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene 22:5855–65

    Article  PubMed  CAS  Google Scholar 

  • She YH, Lee F, Chen J et al (2003) The epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 selectively potentiates, radiation response of human tumors in nude mice, with a marked improvement in therapeutic index. Clin Cancer Res 9:3773–8

    PubMed  CAS  Google Scholar 

  • Sheridan MT, O’Dwyer T, Seymour CB et al (1997) Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat Oncol Investig 5:180–6

    Article  PubMed  CAS  Google Scholar 

  • Shintani S, Li C, Mihara M et al (2003) Enhancement of tumor radioresponse by combined ­treatment with gefitinib (Iressa, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, is accompanied by inhibition of DNA damage repair and cell growth in oral cancer. Int J Cancer 107:1030–7

    Article  PubMed  CAS  Google Scholar 

  • Sirotnak FM (2003) Studies with ZD1839 in preclinical models. Semin Oncol 30:12–20

    Article  PubMed  CAS  Google Scholar 

  • Sorensen AG, Batchelor TT, Zhang WT et al (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69:5296–300

    Article  PubMed  CAS  Google Scholar 

  • Su YB et al (2005) Concurrent cetuximab, cisplatin, and radiotherapy (RT) for loco-regionally advanced squamous cell carcinoma of the head and neck (SCCHN): updated results of a novel combined modality paradigm. ASCO Meet Abstr 23

    Google Scholar 

  • Szumiel I (2006) Epidermal growth factor receptor and DNA double strand break repair: the cell’s self-defence. Cell Signal 18:1537–48

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Munshi A, Brooks C et al (2008) Gefitinib radiosensitizes non-small cell lung cancer cells by suppressing cellular DNA repair capacity. Clin Cancer Res 14:1266–73

    Article  PubMed  CAS  Google Scholar 

  • Thariat J, Yildirim G, Mason KA et al (2007) Combination of radiotherapy with EGFR antagonists for head and neck carcinoma. Int J Clin Oncol 12:99–110

    Article  PubMed  CAS  Google Scholar 

  • Toulany M, Kasten-Pisula U, Brammer I et al (2006) Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 12:4119–26

    Article  PubMed  CAS  Google Scholar 

  • Toulany M, Kehlbach R, Florczak U et al (2008a) Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther 7:1772–81

    Article  PubMed  CAS  Google Scholar 

  • Toulany M, Dittmann K, Fehrenbacher B et al (2008b) PI3K-Akt signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 expression in human tumor cells in vitro. DNA Repair 7:1746–56

    Article  PubMed  CAS  Google Scholar 

  • Valerie K, Yacoub A, Hagan MP et al (2007) Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 6:789–801

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–64

    Article  PubMed  CAS  Google Scholar 

  • Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61:5090–101

    PubMed  CAS  Google Scholar 

  • Wheeler DL, Huang S, Kruser TJ et al (2008) Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 27:3944–56

    Article  PubMed  CAS  Google Scholar 

  • Yacoub A, McKinstry R, Hinman D et al (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159:439–52

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by NIH/NCI Grant R01 CA 113448 to PMH; EFD supported by NIH Physician Scientist Training in Cancer Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily F. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dunn, E.F., Huang, S., Harari, P.M. (2011). EGFR Signaling and Radiation. In: DeWeese, T., Laiho, M. (eds) Molecular Determinants of Radiation Response. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8044-1_10

Download citation

Publish with us

Policies and ethics