Skip to main content

Analyses and Designs Related to Renewable Energy Systems

  • Chapter
Power Conversion of Renewable Energy Systems

Abstract

Chapters 1–11 including the examples are appropriate for an introductory undergraduate course on energy conversion and renewable energy. The following examples in Chap. 12 encompass entire energy systems which include transformer, electric machine systems/drives, centralized (conventional) power system, distribution system analysis with/without power factor compensation, design of power plants and renewable energy storage facilities, photovoltaic, wind, and fuel-cell systems as well as examples associated with the smart grid. This very broad menu of examples can be the topics of a graduate course where the above-mentioned undergraduate course is a prerequisite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.ieeeusa.org/policy/positions/energypolicy.pdf

  2. http://birdcam.xcelenergy.com/sgc/media/pdf/smartgridcityhypothesisWhitePaper_July2008.pdf

  3. http://money.cnn.com/galleries/2009/news/0912/gallery.global_warming/index.html

  4. Dickerman, L.; Harrison, J.; “A new car, a new grid,” IEEE Power and Energy, Vol. 8, No. 2, March/April 2010, pp. 55–61.

    Google Scholar 

  5. Bödefeld, Th.; Sequenz H.: Elektrische Maschinen, 6th Edition, Springer, Wien 1962.

    Book  Google Scholar 

  6. Schuisky. W.: Berechnung elektrischer Maschinen, Springer, Wien, 1960.

    Google Scholar 

  7. Jordan H.; Klima, V.; Kovacs, K.P.: Asynchronmaschinen, Akademiai Kiado, Budapest 1975.

    Google Scholar 

  8. Concordia, C.: Synchronous Machines, John Wiley & Sons, New York, 1951.

    Google Scholar 

  9. Gerthsen, C.H.; Kneser, H.O.: Physik, 6th Edition, Springer, Berlin, 1960

    Google Scholar 

  10. Wood, A.J.; Wollenberg, B.F.: Power Generation Operation & Control, John Wiley & Sons, New York, 1984.

    Google Scholar 

  11. Fuchs, E.F.; Masoum M.A.S.: Power Quality in Power Systems and Electrical Machines, Elsevier, Amsterdam, 2008, 638 pages. ISBN: 978-0-12-369536-9.

    Google Scholar 

  12. Fuchs, E.F.; Fuchs, W.L.: Complementary Control of Intermittently Operating Renewable Sources with Short- and Long-Term Storage Plants,” Chapter in Energy Storage, InTech Open Access Publisher, University Campus STeP Ri, Slavka Krautzeka 83/A, 51000 Rijeka, Croatia, ISBN: 978-953-307-269-2, 2011.

    Google Scholar 

  13. Grainger, J.J.; Stevenson, W.D., Jr.: Power System Analysis, McGraw-Hill, New York, 1994.

    Google Scholar 

  14. 90 MW Pumpspeicherwerk Glems, Technische Werke der Stadt Stuttgart A.G., 1964.

    Google Scholar 

  15. http://www.tva.gov/sites/raccoonmt.htm

  16. Cowdrey, J.: Boulder’s municipal hydroelectric system, July 7, 2004.

    Google Scholar 

  17. Zipparro, V.J.; Hasen, H.: Davis’ Handbook of Applied Hydraulics, 4th Edition, McGraw-Hill, New York, 1993, ISBN 0-70-073002-4.

    Google Scholar 

  18. American Society of Mechanical Engineers, The Guide to Hydropower Mechanical Design, HIC Publications, 1996, ISBN 0-9651765-0-9.

    Google Scholar 

  19. Mattick, W.; Haddenhorst, H.G.; Weber, O.; Stys, Z.S.: “ Huntorf- the world’s first 290 MW gas turbine air storage peaking plant,” Proceedings of the American Power Conference, Vol. 37, 1975, pp. 322–330.

    Google Scholar 

  20. Vosburgh, K.G.: “Compressed air energy storage,” Journal of Energy, Vol. 2, No. 2, March-April 1978, pp. 106–112.

    Google Scholar 

  21. Fitzgerald, A.E.; Kingsley Jr., Ch.; Umans, S.D.: Electric Machinery, 5th Edition, McGraw-Hill Publishing Company, New York, 1990.

    Google Scholar 

  22. Masoum, M.A.S.; Dehbonei, H.; Fuchs, E.F.: "Theoretical and experimental analyses of photovoltaic systems with voltage- and current-based maximum power point tracking," IEEE Transaction on Energy Conversion, Vol. 17, No. 4, December 2002, pp. 514–522.

    Google Scholar 

  23. Appelbaum, J.: “Starting and steady-state characteristics of DC motors powered by solar cell generators, IEEE Transaction on Energy Conversion, Vol. EC-1, No. 1, March 1986.

    Google Scholar 

  24. Bergey, K.H.: “The Lanchester-Betz limit”, Journal of Energy, Vol. 3, No. 6, November–December, 1979.

    Google Scholar 

  25. van Kuik, G.A.M.: “ The Lanchester-Betz-Joukowsky limit,”Wiley Interscience, February 14, 2007, (www.interscience.wiley.com) DOI: 10.1002/we.218.

  26. Joukowsky, N.E.: “Windmill of the NEJ type,” Transactions of the Central Institute for Aero-Hydrodynamics of Moscow 1920. Also published in Joukowsky N.E, Collected Papers Vol. VI. The Joukowsky Institute for Aero-Hydrodynamics, Moscow: Vol VI, 405–409, 1937 (in Russian). Also published in Gauthier-Villars et Cie. (eds). Theorie Tourbillionnaire de l’Helice Propulsive, Quatrieme Memoire. 123–146: Paris, 1929 (in French).

    Google Scholar 

  27. Joukowsky, N.E.: Fourth paper published in the Transactions of the Office for Aerodynamic Calculations and Essays of the Superior Technical School of Moscow 1918 (in Russian)

    Google Scholar 

  28. Wang, C.; Nehrir, M.H.; Shaw S.R.: “Dynamic models and model validation for PEM fuel cells using electrical circuits,” IEEE Transaction on Energy Conversion, Vol. 20, No. 2, June 2005, pp 442–451.

    Google Scholar 

  29. Ipakchi, A.; Albuyeh, F.: "Grid of the future," IEEE Power and Energy Magazine, Vol. 7, pp. 52–62, 2009.

    Google Scholar 

  30. Saber, A.Y.; Venayagamoorthy, G.K.: One million plug-in electric vehicles on the road by 2015, 12th International IEEE Conference on Intelligent Transportation Systems ITSC ‘09, 2009, pp. 1–7.

    Google Scholar 

  31. Masoum, M.A.S.; Moses, P.S.; Deilami, S.: Load management in smart grids considering harmonic distortion and transformer derating, International Conference on Innovative Smart Grid Technologies (ISGT), Jan. 19–21, Gaithersburg, MD, USA, 2010, pp. 1–7.

    Google Scholar 

  32. Masoum, A.S.; Deilami, S.; Moses, P.S.; Abu-Siada A.: Impacts of battery charging rates of plug-in electric vehicle on smart grid distribution systems, International Conference on Innovative Smart Grid Technologies (ISGT), Oct 10–13, Gothenburg, Sweden, 2010, pp. 1-6.

    Google Scholar 

  33. Moses, P.S.; Deilami, S.: Masoum, A.S.; Masoum, M.A.S.; Power quality of smart grids with plug-in electric vehicles considering battery charging profile, International Conference on Innovative Smart Grid Technologies (ISGT), Oct 10–13, Gothenburg, Sweden, 2010, pp. 1–7.

    Google Scholar 

  34. Deilami, S.; Masoum, A.S.; Moses, P.S.; Masoum, M.A.S.: Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile, IEEE Transactions on Smart Grid, Vol. 2, pp. 456–467, 2011.

    Google Scholar 

  35. Masoum, A.S.: Impact of coordinated and uncoordinated charging of plug-in electrical vehicles on smart grid, MS Thesis, Curtin University, WA, Australia, Nov. 2010.

    Google Scholar 

  36. Iravani, M.R.; Chaudhary, A.K.S.; Giesbrecht, W.J.; Hassan, I.E.; Keri, A.J.F.; Lee, K.C.; Martinez, J.A.; Morched, A.S.; Mork, B.A.; Parniani, M.; Sharshar, A.; Shirmohammadi, D.; Walling, R.A.; Woodford, D.A.: Modeling and analysis guidelines for slow transients. III. The study of ferroresonance, IEEE Transactions on Power Delivery, Vol. 15, pp. 255–265, 2000.

    Google Scholar 

  37. Lamba, H.; Grinfeld, M.; McKee, S.; Simpson, R.: Subharmonic ferroresonance in an LCR circuit with hysteresis, IEEE Transactions on Magnetics, Vol. 33, pp. 2495–2500, 1997.

    Google Scholar 

  38. Rezaei-Zare, A.; Iravani, R.; Sanaye-Pasand, M.: Impacts of transformer core hysteresis formation on stability domain of ferroresonance modes, IEEE Transactions on Power Delivery, Vol. 24, pp. 177–186, 2009.

    Google Scholar 

  39. Khorasani, P.G.; Deihimi, A.: A new modeling of Matlab transformer for accurate simulation of ferroresonance, International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2009, pp. 529–534.

    Google Scholar 

  40. Moses, P.S.; Masoum, M.A.S.: Modeling ferroresonance in asymmetric three-phase power transformers, in Australasian Universities Power Engineering Conference (AUPEC), 2009, pp. 1–6.

    Google Scholar 

  41. Makarov, A.V. ; Komin, V.G.: The research of ferroresonant phenomena in electric circuits under open-phase operating conditions, IEEE Russia Power Tech, 2005, pp. 1–7.

    Google Scholar 

  42. Lesieutre, B.C.; Mohamed, J.A.; Stankovic, A.M.: Analysis of ferroresonance in three-phase transformers, International Conference on Power System Technology, 2000 (PowerCon), 2000, Vol. 2, pp 1013–1018.

    Google Scholar 

  43. Tokic, A.; Madzarevic, V.; Uglesic, I.: Numerical calculations of three-phase transformer transients, IEEE Transactions on Power Delivery, Vol. 20, pp. 2493–2500, 2005.

    Article  Google Scholar 

  44. Pedra, J.; Sainz, L.; Corcoles, F.; Lopez, R.; Salichs, M.: PSPICE computer model of a nonlinear three-phase three-legged transformer, IEEE Transactions on Power Delivery, Vol. 19, pp. 200–207, 2004.

    Article  Google Scholar 

  45. Masoum, M.A.S.; Moses, P.S.; Masoum, A.S.: Derating of asymmetric three-phase transformers serving unbalanced nonlinear loads, IEEE Transactions on Power Delivery, Vol. 23, pp. 2033–2041, 2008.

    Article  Google Scholar 

  46. Masoum, M.A.S.; Moses, P.S.: Impact of balanced and unbalanced DC bias on harmonic distortion generated by asymmetric three-phase three-leg transformers, IET Electric Power Applications, Vol. 4, No. 7, pp. 507-515, 2010.

    Google Scholar 

  47. Moses, P.S.; Masoum, M.A.S.; Toliyat, H.A.: Dynamic modeling of three-phase asymmetric power transformers with magnetic hysteresis: no-load and inrush conditions, IEEE Transactions on Energy Conversion, Vol. 26, pp. 1040–1047, 2010.

    Google Scholar 

  48. Moses, P.S.; Masoum, M.A.S.; Toliyat, H.A.: Impacts of hysteresis and magnetic couplings on the stability domain of ferroresonance in asymmetric three-phase, three-leg transformers, IEEE Transactions on Energy Conversion, Vol. 26, pp. 581–592, 2011.

    Google Scholar 

  49. Masoum, M.A.S.; Fuchs, E.F.; Roesler, D.J.: Large signal nonlinear model of anisotropic transformers for nonsinusoidal operation, II. Magnetizing and core-loss currents, IEEE Transactions on Power Delivery, Vol. 6, pp. 1509–1516, 1991.

    Article  Google Scholar 

  50. Fuchs, E.F.; You, Y.: Measurement of lambda-i characteristics of asymmetric three-phase transformers and their applications, IEEE Transactions on Power Delivery, Vol. 17, pp. 983–990, 2002.

    Google Scholar 

  51. Ferracci, P.: Ferroresonance, Group Schneider: Cahier No. 190, pp. 1–28, March 1998.

    Google Scholar 

  52. Moses, P.S.; Masoum, M.A.S.: Modeling Ferroresonance in Asymmetric Three-Phase Power Transformers, Australasian Universities Power Engineering Conference, AUPEC 2009, pp. 1–6, 2009.

    Google Scholar 

  53. Moses, P.S.: private communication

    Google Scholar 

  54. Fuchs, E.F.; Masoum, M.A.S.; Roesler, D.J.: Large signal nonlinear model of anisotropic transformers for nonsinusoidal operation, I. Lambda-i characteristics, IEEE Transactions on Power Delivery, Vol. 6, pp. 1874–1886, 1991.

    Article  Google Scholar 

  55. Fuchs, W.L.; Fuchs, E.F.: Frequency variations of power system due to switching of renewable energy sources, International Conference on Renewable Energies and Power Quality (ICREPQ’ 12), Santiago de Compostela (Spain), 28th to 30th March, 2012, 6 pages.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewald F. Fuchs .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fuchs, E.F., Masoum, M.A.S. (2011). Analyses and Designs Related to Renewable Energy Systems. In: Power Conversion of Renewable Energy Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7979-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7979-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7978-0

  • Online ISBN: 978-1-4419-7979-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics