Skip to main content

Microbially Synthesized Nanoparticles: Scope and Applications

  • Chapter
  • First Online:
Microbes and Microbial Technology

Abstract

The critical need for development of reliable and eco-friendly processes for synthesis of metallic nanoparticles has recently been realized in the field of nanotechnology. Increasing awareness toward green chemistry and biological ­processes has elicited a desire to explore environmentally friendly approaches for the synthesis of nanoparticles as a safer alternative to physical and chemical methods, which involves harsh conditions and use of hazardous chemicals. Therefore, the use of natural resources, including bacteria and fungi, has been exploited for cost-­effective and environmentally nonhazardous nanoparticle synthesis. The rich microbial diversity of bacteria and fungi contains the innate potential for the synthesis of nanoparticles and may be regarded as potential biofactories. In fact, microbial ­synthesis of nanoparticles has emerged as an important branch of nanobiotechnology. The synthesis of inorganic materials by biological systems occurs through remarkable processes at ambient temperature and pressures and neutral pH. Among the various biological systems, bacteria are relatively easy to manipulate genetically, whereas fungi have an advantage of easy handling during downstream processing and large-scale production. In spite of the successes achieved in biological synthesis of nanoparticles, there is still a need to improve the rate of synthesis and monodispersity of nanoparticles. Also, microbial cultivation and downstream processing techniques must be improved, and more efficient methods should be developed. Furthermore, in order to exploit the system to its maximum potential, it is essential to understand the biochemical and molecular mechanisms involved in nanoparticle synthesis. Delineation of specific genomic pathways and characterization of gene products involved in biosynthesis of nanoparticles are required. The underlying molecular mechanisms that mediate microbial synthesis of nanoparticles will help in understanding the molecular switches and factors necessary to control the size and shape, as well as crystallinity of nanoparticles. Indeed, biological systems are still relatively unexplored, and therefore, the opportunities are open for budding nanobiotechnologists to utilize nonpathogenic biological systems for metallic nanoparticle synthesis with commercial perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., and Sastry, M. 2002. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313–318.

    Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. 2003a. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete Thermomonospora sp. Langmuir 19: 3550–3553.

    CAS  Google Scholar 

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., and Sastry, M. 2003b. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28: 313–318.

    CAS  Google Scholar 

  • Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., and Sastry, M. 2005. Extra-/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium. J. Biomed. Nanotechnol. 1: 47–53.

    CAS  Google Scholar 

  • Alivisatos, P. 2004. The use of nanocrystals in biological detection. Nat. Biotechnol. 22: 47–52.

    CAS  Google Scholar 

  • Ayyad, O., Rohas, D. M., Sole, J. O., Romero, P. G. 2010. From silver nanoparticles to nanostructures through matrix chemistry. J. Nanopart. Res. 12: 337–345.

    CAS  Google Scholar 

  • Bai, H. J., Zhang, Z. M., Guo, Y., and Yang, G. E. 2009. Biosynthesis of cadmium sulfide ­nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf. B Biointerfaces 70: 142–146.

    CAS  Google Scholar 

  • Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, B. D., Prabhakar, B. K., and Venkataraman, A. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces 68: 88–92.

    CAS  Google Scholar 

  • Bansal, V., Rautaray, D., Ahmad, A., and Sastry, M. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J. Mater. Chem. 14: 3303–3305.

    CAS  Google Scholar 

  • Bansal, V., Sanyal, A., Rautaray, D., Ahmad, A., and Sastry, M. 2005. Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv. Mater. 17: 889–892.

    CAS  Google Scholar 

  • Bansal, V., Poddar, P., Ahmad, A., and Sastry, M. 2006. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128: 11958–11963.

    CAS  Google Scholar 

  • Bao, C. Y., Jin, M., Lu, R., Zhang, T. R., and Zhao, Y. Y. 2003. Preparation of Au nanoparticles in the presence of low generational poly (amidoamine) dentrimer with surface hydroxyl groups. Mater. Chem. Phys. 81: 160–165.

    CAS  Google Scholar 

  • Barud, H. S., Barrios, C., Regiani, T., Marques, R. F. C., Verelst, M., Dexpert-Ghys, J., et al. 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mat. Sci. Eng. C 28: 515–518.

    CAS  Google Scholar 

  • Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., and Venkataraman, A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat. Res. Bull. 43: 1164–1170.

    CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W. 1988. Anaerobic magnetite production by a marine magnetotactic bacterium. Nature 334: 518–519.

    Google Scholar 

  • Bazylinski, D. A., Heywood, B. R., Mann, S., and Frankel, R. B. 1993. Fe3O4 and FeS4 in a bacterium. Nature 366: 218.

    Google Scholar 

  • Beveridge, T. J., and Murray, R. G. E. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 141: 876–887.

    CAS  Google Scholar 

  • Bhainsa, K. C., and D’Souza, S. F. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf. B Biointerfaces 47: 160–164.

    CAS  Google Scholar 

  • Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., and Sastry, M. 2006. Extracellular biosynthesis of magnetite using fungi. Small 2: 135–141.

    CAS  Google Scholar 

  • Bharde, A., Wani, A., Shouche, Y., Pattayil, A., Bhagavatula, L., and Sastry, M. 2005. Bacterial aerobic synthesis of nanocrystalline magnetite. J. Am. Chem. Soc. 127: 9326–9327.

    CAS  Google Scholar 

  • Birla, S. S., Tiwari, V. V., Gade, A. K., Ingle, A. P., Yadav, A. P., and Rai, M. K. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48: 173–179.

    CAS  Google Scholar 

  • Blakemore, R. P., Maratea, D., and Wolfe, R. S. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140: 720–729.

    CAS  Google Scholar 

  • Brayner, R., Barberousse, H., Hemadi, M., Djedjat, C., Yéprémian, C., Coradin, T., Livage, J., Fiévet, F., Couté, A. 2007. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 7(8): 2696–2708

    CAS  Google Scholar 

  • Brierley, J. A. 1990. In: Biosorption of Heavy Metals (Volesky, B., Ed.), Boca Raton, USA, p. 305.

    Google Scholar 

  • Bruchez, M. Jr., Moronne, M., Gin, P, Weiss, S., and Alivisatos, A. P. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013–2016.

    CAS  Google Scholar 

  • Chang, C. C., Lin, C. K., Chan, C. C., Hsu, C. S., and Chen, C. Y. 2006. Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films 494: 274–278.

    CAS  Google Scholar 

  • Chen, J. C., Lin, Z. H., and Ma, X. X. 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett. Appl. Microbiol. 37: 105–108.

    CAS  Google Scholar 

  • Chen, Q., Shen, X., and Gao, H. 2006. One-step synthesis of silver-poly(4- vinylpyridine) hybrid microgels by -irradiation and surfactant-free emulsion polymerization, the photoluminescence characteristics. Colloids Surf. A Physicochem. Eng. Asp. 275: 45–49.

    CAS  Google Scholar 

  • Courrol, L. C., Silva, F. R. D. O., and Gomes, L. 2007. A simple method to synthesize silver nanoparticles by photo-reduction. Colloids Surf. A Physicochem. Eng. Asp. 305: 54–57.

    CAS  Google Scholar 

  • Cui, D., and Gao, H. 2003. Advance and prospects of bionanomaterials. Biotechnol. Prog. 19: 683–692.

    CAS  Google Scholar 

  • Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., Brus, L. E., and Winge, D. R. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597.

    CAS  Google Scholar 

  • Daniel, M.-C., and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104: 293–346.

    CAS  Google Scholar 

  • Darnall, D. W., Greene, B., Henzel, M. J., Hosea, M., McPherson, R. A., Sneddon, J., and Alexander, M. D. 1986. Selective recovery of gold and other metal ions from an algal biomass. Environ. Sci. Technol. 20: 206–208.

    CAS  Google Scholar 

  • Dastjerdi, R., Mojtahedi, M. R. M., and Shoshtari, A. M. 2009. Comparing the effect of three processing methods for modification of filament yarns with inorganic nanocomposite filler and their bioactivity against Staphylococcus aureus. Macromol. Res. 17: 378–387.

    CAS  Google Scholar 

  • Dastjerdi, R., Mojtahedi, M. R. M., Shoshtari, A. M., and Khosroshahi, A. 2010. Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. J. Textile Inst. 101: 204–213.

    CAS  Google Scholar 

  • De Windt, D., Aelterman, P., and Verstraete, W. 2005. Bioreductive deposition of palladium(0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ. Microbiol. 7: 314–325.

    Google Scholar 

  • Dickson, D. P. E. 1999. Nanostructured magnetism in living systems. J. Magn. Mater. 203: 46–49.

    CAS  Google Scholar 

  • Dimitrov, D. S. 2006. Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf. A Physicochem. Eng. Asp. 282–283: 8–10.

    Google Scholar 

  • Du, L., Jiang, H., Xiaohua, H., and Wang, E. 2007. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of haemoglobin. Electrochem. Commun. 9: 1165–1170.

    CAS  Google Scholar 

  • Dufes, C., Keith, W. N., Bilsland, A., Proutski, I., Uchegbu, I. F., and Schatzlein, A. G. 2005. Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res. 65: 8079–8084.

    CAS  Google Scholar 

  • Durán, N., Marcato, P. D., Souza, G. I. H. D., Alves, O. L., and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.

    Google Scholar 

  • Fayaz, M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., and Venketesan, R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6: 103–109.

    CAS  Google Scholar 

  • Fendler, J. H., Ed. 1998. Nanoparticles and Nanostructured Films. Wiley-VCH, Weinheim.

    Google Scholar 

  • Feng, Y., Yu, Y., Wang, Y., and Lin, X. 2007. Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr. Microbiol. 55: 402–408.

    CAS  Google Scholar 

  • Frilis, N., and Myers-Keith, P. 1986. Biosorption of uranium and lead by Streptomyces longwoodensis. Biotechnol. Bioeng. 28: 21–28.

    Google Scholar 

  • Gade, A. K., Bonde, P. P., Ingle, A. P., Marcato, P., Duran, N., and Rai, M. K. 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy 2: 1–5.

    Google Scholar 

  • Gericke, M., and Pinches, A. 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy 83: 132–140.

    CAS  Google Scholar 

  • Gerrard, T. L., Telford, J. N., and Williams, H. H. 1974. Detection of selenium deposits in Escherichia coli by electron microscopy. J. Bacteriol. 119: 1057–1060.

    CAS  Google Scholar 

  • Gopalan, B., Ito, I., Branch, C. D., Stephens, C., Roth, J. A., and Ramesh, R. 2004. Nanoparticle based systemic gene therapy for lung cancer: molecular mechanisms and strategies to suppress nanoparticle- mediated inflammatory response. Technol. Cancer Res. Treat. 3: 647–657.

    CAS  Google Scholar 

  • Gregorio, S. D., Lampis, S., and Vallini, G. 2005. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ. Int. 31: 233–241.

    Google Scholar 

  • Gupta, A., and Silver, S. 1998. Silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16: 888.

    CAS  Google Scholar 

  • Hardman, R. 2006. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114: 165–172.

    Google Scholar 

  • Holmes, J. D., Smith, P. R., Evans-Gowing, R., Richardson, D. J., Russell, D. A., and Sodeau, J. R. 1995. Energy-dispersive-X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch. Microbiol. 163: 143–147.

    CAS  Google Scholar 

  • Huang, C. P., Juang, C. P., Morehart, K., and Allen, L. 1990. The removal of Cu (II) from dilute aqueous solutions by Saccharomyces cerevisiae. Water Res. 24: 433–439.

    CAS  Google Scholar 

  • Husseiny, M. I., Abd El-Aziz, M., Badr, Y., and Mahmoud, M. A. 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A Mol. Biomol. Spectrosc. 67: 1003–1006.

    CAS  Google Scholar 

  • Ingle, A., Rai, M., Gade, A., and Bawaskar, M. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 11: 2079–2085.

    CAS  Google Scholar 

  • Jeong, S. H., Hwang, Y. H., and Yi, S. C. 2005. Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J. Mater. Sci. 40: 5413–5418.

    CAS  Google Scholar 

  • Jha, A. K., Prasad, K., and Prasad, K. 2009. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43: 303–306.

    CAS  Google Scholar 

  • Juzenas, P., Chen, W., Sun, Y. P., Coelho, M. A. N., Genralov, R., Genralova, N., and Christensen, L. 2008. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev. 60: 1600–1614.

    CAS  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Ramakumarpandian, S., Nellaiah, H., and Sangiliyandi, G. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mat. Lett. 62: 4411–4413.

    CAS  Google Scholar 

  • Kalishwaralal, K., Deepak, V., Pandian, S. R. K., Kottaisamy, M., Barath-ManiKanth, S., Kartikeyan, B., and Gurunathan, S. 2010. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 77: 257–262.

    CAS  Google Scholar 

  • Kathiresan, K., Manivanan, S., Nabeel, M. A., and Dhivya, B. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B Biointerfaces 71: 133–137.

    CAS  Google Scholar 

  • Kaul, G., and Amiji, M. 2005. Tumor-targeted gene delivery using poly (ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res. 22: 951–961.

    CAS  Google Scholar 

  • Klaus, T., Joerger, R., Olsson, E., and Granqvist, C. G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A. 96: 13611–13614.

    CAS  Google Scholar 

  • Klaus-Joerger, T., Joerger, R., Olsson, E., and Granqvist, C. G. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19: 15–20.

    CAS  Google Scholar 

  • Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., and Nagamine, S. 2004. Microbial synthesis of gold nanoparticles by metal reducing bacterium. Trans. Mater. Res. Soc. Jpn. 29: 2341–2343.

    CAS  Google Scholar 

  • Konishi, Y., Ohno, K., Saitoh, N., Nomura, T., Nagamine, S., Hishida, H., Takahashi, Y., and Uruga, T. 2007. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J. Biotechnol. 128: 648–653.

    CAS  Google Scholar 

  • Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., and Paknikar, K. M. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14: 95–100.

    CAS  Google Scholar 

  • Kowshik, M., Deshmukh, N., Vogel, W., Urban, J., Kulkarni, S. K., and Paknikar, K. M. 2002. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 78: 583–588.

    CAS  Google Scholar 

  • Kumar, V., and McLendon, L. 1997. Nanoencapsulation of cytochrome c and horseradish peroxidase at the galleries of α-zirconium phosphate. Chem. Mater. 9: 863–870.

    CAS  Google Scholar 

  • Kumar, S. A., Ayoobul, A. A., Absar, A., and Khan, M. I. 2007. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J. Biomed. Nanotechnol. 3: 190–194.

    CAS  Google Scholar 

  • Labrenz, M., Druschel, G. K., Thomsen-Ebert, T., Gilbert, B., Welch, S. A., and Kemner, K. M. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747.

    CAS  Google Scholar 

  • Lang, C., and Schuler, D. 2006. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes. J. Phys. Condens. Matter. 18: S2815–S2828.

    CAS  Google Scholar 

  • Lee, H., Purdon, A. M., Chu, V., and Westervelt, R. M. 2004. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett. 4: 995–998.

    CAS  Google Scholar 

  • Lengke, M. F., and Southam, G. 2006. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold (I)-thiosulfate complex. Geochim. Cosmochim. Acta 70: 3646–3661.

    CAS  Google Scholar 

  • Lengke, M. F., Fleet, M. E., and Southam, G. 2006a. Bioaccumulation of gold by filamentous cyanobacteria between 25 and 200°C. Geomicrobiol. J. 23: 591–597.

    CAS  Google Scholar 

  • Lengke, M. F., Ravel, B., Fleet, M. E., Wanger, G., Gordon, R. A., and Southam, G. 2006b. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ. Sci. Technol. 40: 6304–6309.

    CAS  Google Scholar 

  • Li, X., Chen, S., Hu, W., Shi, S., Shen, W., Zhang, X., and Wang, H. 2009. In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers. Carbohydr. Polym. 76: 509–512.

    Google Scholar 

  • Li, X. Z., Nikaido, H., and Williams, K. E. 1997. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179: 6127–6132.

    CAS  Google Scholar 

  • Lin, Z., Wu, J., Xue, R., and Yang, Y. 2005. Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim. Acta A 61: 761–765.

    Google Scholar 

  • Lok, C. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.

    CAS  Google Scholar 

  • Lortie, L., Gould, W. D., Rajan, S., McCready, R. G. L., and Cheng, K. J. 1992. Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl. Environ. Microbiol. 58: 4042–4044.

    CAS  Google Scholar 

  • Losi, M. E., and Frankenberger, W. T. Jr. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079–3084.

    CAS  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L. Jr., and Phillips, E. J. P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing bacterium. Nature 330: 252–254.

    CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron and manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700–706.

    CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., Gorby, Y. A., and Landa, E. R. 1991. Microbial reduction of uranium. Nature 350: 413–416.

    CAS  Google Scholar 

  • Lowe, C. R. 2000. Nanobiotechnology: the fabrication and application of chemical and biological nanostructures. Curr. Opin. Struct. Biol. 10: 428–434.

    CAS  Google Scholar 

  • Macdonald, I. D. G., and Smith, W. E. 1996. Orientation of cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12: 706–713.

    CAS  Google Scholar 

  • Mann, S., Frankel, R. B., and Blakemore, R. P. 1984. Structure, morphology and crystal growth of bacterial magnetite. Nature 310: 405–407.

    Google Scholar 

  • Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W. 1990. Biomineralization of ferrimagnetic greigite (Fe3O4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343: 258–260.

    CAS  Google Scholar 

  • Marshall, M. J., Beliaev, A. S., Dohnalkova, A. C., Kennedy, D. W., Shi, L., Wang, Z., Boyanov, M. I., Lai, B., Kemner, K. M., McLean, J. S., Reed, S. B., Culley, D. E., Bailey, V. L., Simonson, C. J., Saffarini, D. A., Romine, M. F., Zachara, J. M., and Fredrickson, J. K. 2006. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol. 4: 1324–1333.

    CAS  Google Scholar 

  • Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. 2005. Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4: 435–446.

    CAS  Google Scholar 

  • Milligan, A. J., and Morel, F. M. M. 2002. A proton buffering role for silica in diatoms. Science 297: 1848–1850.

    CAS  Google Scholar 

  • Mohammadian, A., Shojaosadati, S. A., and Habibi-Rezaee, M. 2007. Fusarium oxysporum mediates photogeneration of silver nanoparticles. J. Sci. Iran 14: 323–326.

    CAS  Google Scholar 

  • Mouxing, F. U., Qingbiao, L. I., Daohua, S. U. N., Yinghua, L. U., Ning, H. E., Xu, D., Wang H., and Huang, J. 2006. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese J. Chem. Eng. 14: 114–117.

    Google Scholar 

  • Mucha, H., Hofer, D., ABflag, S., and Swere, M. 2002. Antimicrobial finishes and modification. Melliand Textile Berichte. 83: 53–56.

    Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Parischa, R., Ajayakumar, P. V., Alam, M., Kumar, R., and Sastry, M. 2001a. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1: 515–519.

    CAS  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Sastry, M., and Kumar, R. 2001b. Bioreduction of AuCl -4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 40: 3585–3588.

    CAS  Google Scholar 

  • Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., and Kale, S. P. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 075103.

    Google Scholar 

  • Musarrat, J., Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Azam, A., Naqvi, A. 2010. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101: 8772–8776.

    CAS  Google Scholar 

  • Myers, C. R., and Nealson, K. H. 1988. Bacterial manganese reduction and growth with manganese oxide as a sole electron acceptor. Science 240: 1319–1321.

    CAS  Google Scholar 

  • Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., and Stone, M. O. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169–172.

    CAS  Google Scholar 

  • Nair, B., and Pradeep, T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293–298.

    CAS  Google Scholar 

  • Nersisyan, H. H., Lee, J. H., Son, H. T., Won, C. W., and Maeng, D. Y. 2003. New and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Mater. Res. Bull. 38: 949–956.

    CAS  Google Scholar 

  • Niemeyer, C. M. 2001. Nanoparticles, proteins, and nucleic acids: biotechnology meets material science. Agnew. Chem. Int. Ed. Engl. 40: 4128–4158.

    CAS  Google Scholar 

  • O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D., and West, J. L. 2004. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209: 171–176.

    Google Scholar 

  • Oremland, R. S., Herbel, M. J., Blum, J. S., Langley, S., Ajayan, P., Sutto, T., Ellis, A. V., and Curran, S. 2004. Structural and spectral features of selenium nanospheres formed by Se-respiring bacteria. Appl. Environ. Microbiol. 70: 52–60.

    CAS  Google Scholar 

  • Pan, Z. W., Dai, Z. R., and Wang, Z. L. 2001. Nanobelts of semiconducting oxides. Science 291: 1947–1949.

    CAS  Google Scholar 

  • Park, S. H., Oh, S. G., Munb, J. Y., and Han, S. S. 2006. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf. B Biointerfaces 48: 112–118.

    CAS  Google Scholar 

  • Perantoni, M., Esquivel, D. M. S., Wajnberg, E., Acosta-Avalos, D., Cernicchiaro G., and Lins de Barros, H. 2009. Magnetic properties of the microorganism Candidatus Magnetoglobus multicellularis. Naturwissenschaften 96: 685–690.

    CAS  Google Scholar 

  • Perkel, J. M. 2004. The ups and downs of nanobiotech. The Scientist 18: 14–18.

    Google Scholar 

  • Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A 73: 374–381.

    Google Scholar 

  • Pighi, L., Pumpel, T., and Schinner, F. 1989. Selective accumulation of silver by fungi. Biotechnol. Lett. 11: 275–280.

    CAS  Google Scholar 

  • Prasad, K., Jha, A. K., and Kulkarni, A. R. 2007. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res. Lett. 2: 248–250.

    CAS  Google Scholar 

  • Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N. K. U., Crawford, S., and Ashok kumar, M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp.. J. Nanopart. Res. 11: 1811–1815.

    CAS  Google Scholar 

  • Pum, D., and Sleytr, U. B. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol. 17: 8–12.

    CAS  Google Scholar 

  • Rai, M., Yadav, A., and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76–83.

    CAS  Google Scholar 

  • Ramanavicius, A., Kausaite, A., and Ramanaviciene, A. 2005. Biofuel cell based on direct bioelectrocatalysis. Biosens. Bioelectron. 20: 1962–1967.

    CAS  Google Scholar 

  • Rao, C. N. R., Kulkarni, G. U., John Thomas, P., Agrawal, V. V., Gautam, U. K., and Ghosh, M. 2003. Nanocrystals of metals, semiconductors and oxides: novel synthesis and applications. Curr. Sci. 85: 1041–1045.

    CAS  Google Scholar 

  • Safarik, I., and Safarikova, M. 2002. Magnetic nanoparticles biosciences. Monatsh. Chem. 133: 737–759.

    CAS  Google Scholar 

  • Sakaguchi, T., Tsuji, T., Nakajima, A., and Horikoshi, T. 1979. Accumulation of cadmium by green microalgae. Eur. J. Appl. Microbiol. Biotechnol. 8: 207–215.

    CAS  Google Scholar 

  • Sanghi, R., and Verma, P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 100: 501–504.

    CAS  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M. I., and Kumar, R. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162–170.

    CAS  Google Scholar 

  • Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., and Yun, Y. S. 2009. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nanocrystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 73: 332–338.

    CAS  Google Scholar 

  • Schmid, G. 1992. Clusters and colloids–metals in the embryonic state. Chem. Rev. 92: 1709–1727.

    CAS  Google Scholar 

  • Schuler, D., and Frankel, R. B. 1999. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 52: 464–473.

    CAS  Google Scholar 

  • Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Sastry, M., and Kumar, R. 2004. Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind. J. Phys. 78A: 101–105.

    CAS  Google Scholar 

  • Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., and Nohi, A. A. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Proc. Biochem. 42: 919–923.

    CAS  Google Scholar 

  • Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., and Pandey, A. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Proc. Biochem. 44: 939–943.

    CAS  Google Scholar 

  • Shankar, S. S., Ahmad, A., Pasrichaa, R., and Sastry, M. 2003. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13: 1822–1826.

    CAS  Google Scholar 

  • Sharma, P. K., Balkwill, D. L., Frenkel, A., and Vairavamurthy, M. A. 2000. A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl. Environ. Microbiol. 66: 3083–3087.

    CAS  Google Scholar 

  • Shiying, H., Zhirui, G., Zhanga, Y., Zhanga, S., Wanga, J., and Ning, G. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater. Lett. 61: 3984–3987.

    Google Scholar 

  • Silverberg, B. A., Wong, P. T. S., and Chau, Y. K. 1976. Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch. Microbiol. 107: 1–6.

    CAS  Google Scholar 

  • Smith, A. M., Duan, H., Mohs, A. M., and Nie, S. 2008. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60: 1226–1240.

    CAS  Google Scholar 

  • Smith, P. R., Holmes, J. D., Richardson, D. J., Russell, D. A., and Sodeau, J. R. 1998. Photophysical and photochemical characterization of bacterial semiconductor cadmium sulfide particles. J. Chem. Soc. Faraday Trans. 94: 1235–1241.

    CAS  Google Scholar 

  • Suzuki, Y., Kelly, S. D., Kemner, K. M., and Banfield, J. F. 2002. Nanometer-size products of uranium bioreduction. Nature 419: 134.

    CAS  Google Scholar 

  • Sweeney, R. Y., Mao, C., Gao, X., Burt, J. L., Belcher, A. M., Georgiou, G., and Iverson, B. L. 2004. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem. Biol. 11: 1553–1559.

    CAS  Google Scholar 

  • Tomei, F. A., Barton, L. L., Lemanski, C. L., Zocco, T. G., Fink, N. H., and Sillerud, L. O. 1995. Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J. Ind. Microbiol. 14: 329–336.

    CAS  Google Scholar 

  • Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., and Balasubramanya, R. H. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mat. Lett. 61: 1413–1418.

    CAS  Google Scholar 

  • Vigneshwaran, N., Kathe, A. A., Varadarajan, P. V., Nachane, R. P., and Balasubramanya, R. H. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B Biointerfaces 53: 55–59.

    CAS  Google Scholar 

  • Watson, J.H.P., Ellwood, D.C., Soper, A.K., and Charrock, J. 1999. Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J. Magn. Mater. 203: 69–72.

    CAS  Google Scholar 

  • Woolfolk, C. A., and Whiteley, H. R. J. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol. 84: 647–658.

    CAS  Google Scholar 

  • Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., and Larson, J. P., Ge, N., Peale, F., and Bruchez, M. P. 2003. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21: 41–46.

    CAS  Google Scholar 

  • Xie, Y., Ye, R., and Liu, H. 2006. Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf. A Physicochem. Eng. Asp. 279: 175–178.

    CAS  Google Scholar 

  • Xu, T., and Xie, C. S. 2003. Tetrapod-like nano-particle ZnO/acrylic resin composite and its multi-function property. Prog. Org. Coatings 46: 297–301.

    CAS  Google Scholar 

  • Yadav, V., Sharma, N., Prakash, R., Raina, K. K., Bharadwaj, L. M., and Prakash, N. T. 2008. Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7: 299–304.

    CAS  Google Scholar 

  • Yong, P., Rowsen, N. A., Farr, J. P. G., Harris, I. R., and Macaskie, L. E. 2002. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol. Bioeng. 80: 369–379.

    CAS  Google Scholar 

  • Yu, D. G. 2007. Formation of colloidal silver nanoparticles stabilized by Na+poly(-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces 59: 171–178.

    CAS  Google Scholar 

  • Zeiri, L., Bronk, B. V., Shabtai, Y., Czégé, J., and Efrima, S. 2002. Silver metal induced surface enhanced Raman of bacteria. Colloids Surf. A Physicochem. Eng. Asp. 208: 357–362.

    CAS  Google Scholar 

  • Zhang, Y., Kohler, N., and Zhang, M. 2002. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553–1561.

    CAS  Google Scholar 

  • Zhang, Y., Peng, H., Huanga, W., Zhou, Y., and Yan, D. 2008. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 325: 371–376.

    CAS  Google Scholar 

  • Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., and Zheng, S. 2005. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem. Technol. Biotechnol. 80: 285–290.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Musarrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Musarrat, J., Dwivedi, S., Singh, B.R., Saquib, Q., Al-Khedhairy, A.A. (2011). Microbially Synthesized Nanoparticles: Scope and Applications. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_5

Download citation

Publish with us

Policies and ethics