Skip to main content

Rational Use of Novel Technologies: A Comparative Analysis of the Performance of Several New Food Preservation Technologies for Microbial Inactivation

  • Chapter
  • First Online:
Novel Technologies in Food Science

Abstract

Many of the modified (for improving food quality) traditional preservation procedures and the radically new ones (high hydrostatic pressure, ultrasound, ultraviolet light, ozone, ultraviolet light pulses, electric pulses, etc.) are effective in inactivating only vegetative cells of bacteria, yeasts, and filamentous fungi. So, emerging preservation procedures have to be included as components or hurdles in combined preservation systems to ensure food safety. The lethality of a stress factor is strongly affected by the presence/intensity of other lethal/inhibitory factors.

Within the framework of hurdle technology, a huge amount of scientific literature has been published in the last 15 years, indicating the enormous popularity and potential of the concept in the development of emerging combined technologies to aid in producing minimally processed foods.

Microbial cell physiological responses in relation to emerging factors in combination with other constraints are complex and are not fully understood, as in the case of many traditional preservation factors. Predictive modeling in emerging technologies allows quantification of the influence of various hurdles on the microbial behavior, allowing the interaction effects between them – antagonistic, synergistic or additive– to be precisely discerned.

This chapter compares the ability of selected emerging technologies to reduce microbial populations. Inactivation/decline kinetic patterns of microorganisms in treatments with conventional/unconventional lethal agents combined with other environmental stress factors are discussed and analyzed on the basis of a rigorous kinetic analysis of survival data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenainen R. New approaches in improving shelf life of minimally processed fruit and vegetables. Trend Food Sci Technol. 1996;7:179–87.

    Article  CAS  Google Scholar 

  • Ahvenainen R, Mattila-Sandholm T, Ohlsson T. Minimal processing of foods, VTT symposium series, vol. 142. Espoo: Technical Research Center of Finland (VTT); 1994.

    Google Scholar 

  • Ahvenainen R. Minimal processing in the future: integration across the supply chain. In: Ohlsson T, Bengtsson N, editors. Minimal processing technologies in the food industry. Cambridge: Woodhead; 2002. p. 267–81.

    Chapter  Google Scholar 

  • Alpas H, Kalchayanand N, Bozoglu F, Sikes A, Dunne CP, Ray B. Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl Environ Microbiol. 1999;65:4248–51.

    CAS  Google Scholar 

  • Álvarez I, Raso J, Palop A, Sala FJ. Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields. Int J Food Microbiol. 2000;55:143–6.

    Article  Google Scholar 

  • Alzamora SM, Salvatori DM. Minimal processing: fundamental and application. In: Hui YH, editor. Handbook of food science, technology and engineering, vol. 3. Boca Raton: CRC Press/Taylor & Francis; 2006. p. 118–1–6.

    Google Scholar 

  • Alzamora SM, Guerrero S, López-Malo A, Palou E. Plant antimicrobial combined with convectional preservatives for fruit products. In: Roller S, editor. Natural antimicrobials for the minimal processing of foods. Cornwall: Woodhead; 2003. p. 235–49.

    Chapter  Google Scholar 

  • Alzamora SM, Tapia MS, López-Malo A, editors. Minimally processed fruits and vegetables. Fundamentals and applications. Gaithersburg: Aspen Publishers; 2000a.

    Google Scholar 

  • Alzamora SM, Tapia MS, López-Malo A. Overview. In: Alzamora SM, Tapia MS, López-Malo A, editors. Minimally processed fruits and vegetables. Fundamentals and applications. Gaithersburg: Aspen Publishers; 2000b. p. 1–9.

    Google Scholar 

  • Alzamora SM, Tapia MS, Welti-Chanes J. New strategies for minimally processed foods. The role of multitarget preservation. Food Sci Technol Int. 1998;4:353–62.

    Article  Google Scholar 

  • Amiali M, Ngadi MO, Smith JP, Raghavan GSV. Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157:H7 and Salmonella enteritidis in liquid egg yolk. J Food Eng. 2007;79:689–94.

    Article  Google Scholar 

  • Avsaroglu MD, Buzrul S, Alpas H, Akcelik M, Bozoglu F. Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. Int J Food Microbiol. 2006;108:78–83.

    Article  Google Scholar 

  • Barbosa-Cánovas GV. Key goals of emerging technologies for inactivating bacteria. Food Safety Mag. 2002;8(4):34–42.

    Google Scholar 

  • Baumann AR, Martin SE, Feng H. Power ultrasound treatment of Listeria monocytogenes in apple cider. J Food Prot. 2005;68(11):2333–40.

    Google Scholar 

  • Bialka KL, Demirci A, Puri VM. Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. J Food Eng. 2008;85:444–9.

    Article  Google Scholar 

  • Bintsis T, Litopoulou-Tzanetaki E, Robinson R. Existing and potential applications of ultraviolet light in the food industry-a critical review. J Sci Food Agric. 2000;80:637–45.

    Article  CAS  Google Scholar 

  • Butz P, Tauscher B. Emerging technologies: chemical aspects. Food Res Int. 2002;35:279–84.

    Article  CAS  Google Scholar 

  • Carlez A, Rosec JP, Richard N, Cheftel J. High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens, and Listeria innocua in inoculated minced beef. Lebensm Wiss Technol. 1993;26:48–54.

    Article  Google Scholar 

  • Char C, Guerrero S, Alzamora SM. Survival of Listeria innocua in thermally processed orange juice is affected by vanillin addition. Food Control. 2009;20(1):67–74.

    Article  CAS  Google Scholar 

  • Chick H. An investigation of the laws of disinfection. J Hyg Camb. 1908;8:92–158.

    Article  CAS  Google Scholar 

  • D’Amico DJ, Silk TM, Wu J, Guo M. Inactivation of microorganisms in milk and apple cider treated with ultrasound. J Food Prot. 2006;69(3):556–63.

    Google Scholar 

  • Diels AMJ, Wuytack EY, Michiels CW. Modelling inactivation of Staphylococcus aureus and Yersinia enterocolitica by high-pressure homogenization at different temperatures. Int J Food Microbiol. 2003;87:55–62.

    Article  Google Scholar 

  • Diels AMJ, Callewaert L, Wuytack EY, Masschalck B, Michiels CW. Inactivation of Escherichia coli by high-pressure homogenization is influenced by fluid viscosity but not by water activity and product composition. Int J Food Microbiol. 2005;101:281–91.

    Article  CAS  Google Scholar 

  • Donsì G, Ferrai G, Lenza E, Maresca P. Main factors regulating microbial inactivation by high-pressure homogenization: operating parameters and scale of operation. Chem Eng Sci. 2009;64:520–32.

    Article  CAS  Google Scholar 

  • Estrada-Girón Y, Guerrero-Beltrán JA, Swanson BG, Barbosa-Cánovas GV. Effect of high hydrostatic pressure on spores of Geobacillus stearothermophilus suspended in soymilk. J Food Process Pres. 2007;31:546–58.

    Article  Google Scholar 

  • Geeraerd AH, Valdramidis VP, Van Impe JF. GlnaFit, a free tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol. 2005;102:95–105.

    Article  CAS  Google Scholar 

  • Guerrero-Beltrán JA, Barbosa-Cánovas GV. Reduction of saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by ultraviolet light. J Food Process Eng. 2005;28:437–52.

    Article  Google Scholar 

  • Guerrero-Beltrán JA, Barbosa-Cánovas G, Moraga-Ballesteros G, Moraga-Ballesteros MJ, Swanson BG. Effect of pH and ascorbic acid on high hydrostatic pressure-processed mango puree. J Food Process Preserv. 2006;30:582–96.

    Article  Google Scholar 

  • Guerrero-Beltrán JA, Welti-Chanes J, Barbosa-Cánovas GV. Ultraviolet-c light processing of grape, cranberry and grapefruit juices to inactivate Saccharomyces cerevisiae. J Food Process Eng. 2009;32:916–932.

    Google Scholar 

  • Gómez PL, Salvatori D. Alzamora SM. Estudio de los cambios de color producidos por la aplicación de tecnologías emergentes de conservación en frutas mínimamente procesadas. 9th Congreso Argentino del Color. Santa Fe, Argentina, 1–3 October 2008.

    Google Scholar 

  • Gómez N, García D, Álvarez I, Condon S, Raso J. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. Int J Food Microbiol. 2005;103:199–206.

    Article  CAS  Google Scholar 

  • Heldman DR, Newsome RI. Kinetic models for microbial survival during processing. Food Technol. 2003;57:40–6. 100.

    Google Scholar 

  • Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D. Biological effects of high hydrostatic pressure on food microorganisms. Food Technol. 1989;43:99–107.

    Google Scholar 

  • Huang L. Thermal inactivation of Listeria monocytogenes in ground beef under isothermal and dynamic temperature conditions. J Food Eng. 2009;90:380–7.

    Article  Google Scholar 

  • Huxsoll RL, Bolin HR. Processing and distribution alternatives for minimally processed fruits and vegetables. Food Technol. 1989;43(2):132–8.

    Google Scholar 

  • Juneja VK, Marks HM. Mathematical description of non-linear survival curves of Listeria monocytogenes as determined in a beef gravy model. Innov Food Sci Emerg Technol. 2003;4:307–17.

    Article  Google Scholar 

  • Kinsloe H, Ackerman E, Reid JJ. Exposure of microorganisms to measured sound fields. J Bacteriol. 1954;68:373–80.

    CAS  Google Scholar 

  • Koseki S, Yamamoto K. pH and solute concentration of suspension media affect the outcome of high hydrostatic pressure treatment of Listeria monocytogenes. Int J Food Microbiol. 2006;111:175–9.

    Article  CAS  Google Scholar 

  • Lado BH, Yousef AE. Alternative food–preservation technologies: efficacy and mechanisms. Microbes Infect. 2002;4:433–40.

    Article  Google Scholar 

  • Linton RH, Carter WH, Pierson MD, Hackney CR. Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J Food Prot. 1995;58:946–54.

    Google Scholar 

  • Leistner L. Basic aspects of food preservation by hurdle technology. Int J Food Microbiol. 2000;55:181–6.

    Article  CAS  Google Scholar 

  • López-Malo A, Guerrero S, Alzamora SM. Saccharomyces cerevisiae, thermal inactivation kinetics combined with ultrasound. J Food Prot. 1999;62(10):1215–7.

    Google Scholar 

  • Mafart P. Food engineering and predictive microbiology: on the necessity to combine biological and physical kinetics. Int J Food Microbiol. 2005;100:239–51.

    Article  CAS  Google Scholar 

  • Mafart P, Couvert O, Gaillard S, Leguerinel I. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol. 2002;72:107–13.

    Article  CAS  Google Scholar 

  • Manvell C. Minimal processing of food. Food Sci Technol Today. 1997;11:107–11.

    Google Scholar 

  • Mañas P, Mackey BM. Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol. 2004;70(3):1545–54.

    Article  CAS  Google Scholar 

  • Martín O, Qin BL, Chang FJ, Barbosa-Cánovas GV, Swanson BG. Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields. J Food Process Eng. 1997;20:317–36.

    Article  Google Scholar 

  • McKellar RC, Lu X, editors. Modeling microbial responses in food. Boca Raton: CRC Press; 2004.

    Google Scholar 

  • McMeekin TA. Predictive microbiology: quantitative science delivering quantifiable benefits to the meat industry and other food industries. Meat Sci. 2007;77:17–27.

    Article  CAS  Google Scholar 

  • McMeekin TA, Olley JN, Ross T, Ratkowsky DA. Predictive microbiology: theory and application. Taunton/New York: Research Studies Press/Wiley; 1993.

    Google Scholar 

  • Miller R, Jeffrey W, Mitchell D, Elasri M. Bacterial responses to ultraviolet light. Am Soc Microbiol. 1999;65(8):535–41.

    Google Scholar 

  • Morgan R. UV “green” light disinfection. Dairy Indust Int. 1989;54(11):33–5.

    Google Scholar 

  • Morgan SM, Ross RP, Beresford T, Hill C. Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J Appl Microbiol. 2000;88:414–20.

    Article  CAS  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O. Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov Food Sci Emerg Technol. 2008;9:328–40.

    Article  CAS  Google Scholar 

  • Ohlsson T. Minimal processing–preservation methods of the future: an overview. Trends Food Sci Technol. 1994;5:341–4.

    Article  CAS  Google Scholar 

  • Ohlsson T. New thermal processing methods. Paper presented at the EFFoST Conference on the Minimal Processing of Food, 6–9 Nov 1996.

    Google Scholar 

  • Ohlsson T, Bengtsson N, editors. Minimal processing technologies in the food industry. Cambridge: Woodhead; 2002.

    Google Scholar 

  • Oliveira FAR, Oliveira JC, editors. Processing foods: quality optimization and process assessment. Boca Raton: CRC Press; 1999.

    Google Scholar 

  • Ortega-Rivas E. Processing effect for safety and quality in some non-predominant food technologies. Crit Rev Food Sci Nutr. 2007;47:161–73.

    Article  CAS  Google Scholar 

  • Pagan R, Manas P, Alvarez I, Condon S. Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiol. 1999;16:139–48.

    Article  Google Scholar 

  • Palou E, López-Malo A, Barbosa-Cánovas GV, Welti-Chanes J, Swanson BG. High hydrostatic pressure as a hurdle for Zygosaccharomyces Bailii inactivation. J Food Sci. 1997;62(4):855–7.

    Article  CAS  Google Scholar 

  • Palou E, López-Malo A, Barbosa-Cánovas GV, Welti-Chanes J, Davidson PM, Swanson BG. Effect of oscillatory high hydrostatic pressure treatments on Byssochlamys nivea ascospores suspended in fruit juice concentrates. Lett Appl Microbiol. 1998;27:375–8.

    Article  CAS  Google Scholar 

  • Palou E, López-Malo A, Welti-Chanes J. Innovative fruit preservation methods using high pressure. In: Welti-Chanes J, Barbosa-Cánovas GV, Aguilera JM, editors. Engineering and food for the 21st century. Boca Raton: CRC Press; 2002. p. 715–25.

    Google Scholar 

  • Pathanibul P, Taylor TM, Davidson PM, Harte F. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. Int J Food Microbiol. 2009;129:316–320.

    Google Scholar 

  • Peleg M. On calculating sterility in thermal and non-thermal preservation methods. Food Res Int. 1999;32:271–8.

    Article  Google Scholar 

  • Peleg M. Advanced quantitative microbiology for foods and biosystems – models for predicting growth and inactivation. Boca Raton: Taylor & Francis, CRC; 2006.

    Book  Google Scholar 

  • Peleg M, Cole MB. Reinterpretation of microbial survival curves. Crit Rev Food Sci. 1998;38: 353–380.

    Google Scholar 

  • Peleg M, Cole MB. Estimating the survival of Clostridium botulinum spores during heat treatments. J Food Prot. 2000;63:190–5.

    CAS  Google Scholar 

  • Pilavtepe-Çelik M, Buzrul S, Alpas H, Bozoglu F. Development of a new mathematical model for inactivation of Escherichia coli O157:H7 and Staphylococcus aureus by high hydrostatic pressure in carrot juice and peptone water. J Food Eng. 2009;90:388–94.

    Article  Google Scholar 

  • Piyasena P, Mohareb E, McKellar RC. Inactivation of microbes using ultrasound: a review. Int J Food Microbiol. 2003;87:207–16.

    Article  CAS  Google Scholar 

  • Raffellini S, Guerrero S, Alzamora SM. Inactivation of Escherichia coli in hydrogen peroxide solutions at various concentrations and pHs. J Food Saf. 2008;28:514–533.

    Google Scholar 

  • Raso J, Barbosa-Cánovas GV. Nonthermal preservation of foods using combined processing techniques. Crit Rev Food Sci Nutr. 2003;43:265–85.

    Article  Google Scholar 

  • Raso J, Calderón ML, Góngora M, Barbosa-Cánovas G, Swanson BG. Inactivation of Zygosaccharomyces Bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. J Food Sci. 1998;63(1):1042–4.

    CAS  Google Scholar 

  • Ross AIV, Griffiths MW, Mittal GS, Deeth HC. Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol. 2003;89:125–38.

    Article  Google Scholar 

  • Rolle RS, Chism GW. Physiological consequences of minimally processed fruits and vegetables. J Food Quality. 1987;10:187–93.

    Article  Google Scholar 

  • San Martin MF, Sepulvelda DP, Altunaker B, Gongora-Nieto MM, Sawnson BG, Barbosa-Canovas G. Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields. Food Sci Technol. 2007;40:1271–9.

    CAS  Google Scholar 

  • Sapru V, Smerage, GH, Teixeira AA, Lindsay JA. Comparison of predictive models for bacterial spore population resources to sterilization temperatures. J Food Sci. 1993;58:223–228.

    Google Scholar 

  • Sastry SK, Datta AK, Worobo RW. Ultraviolet light. J Food Sci Suppl. 2009;65:90–2.

    Article  Google Scholar 

  • Saucedo-Reyes D, Marco-Celdrán A, Consuelo Pina-Pérez M, Rodrigo D, Martínez-López A. Modeling survival of high hydrostatic pressure treated stationary- and exponential-phase Listeria innocua cells. Innov Food Sci Emerg Technol. 2008;10(2):135–41.

    Article  CAS  Google Scholar 

  • Schenk M, Guerrero SN, Alzamora SM. Response of some microorganisms to ultraviolet treatment on fresh-cut pear. Food Bioprocess Technol. 2008;1:384–92.

    Article  Google Scholar 

  • Shewfelt RL. Quality of minimally processed fruits and vegetables. J Food Quality. 1987;10:143–56.

    Article  Google Scholar 

  • Singh RP, Oliveira FAR, editors. Minimal processing of foods and process optimization: an interface. Boca Raton: CRC Press; 1994.

    Google Scholar 

  • Sizer CE, Balasubramaniam VM. New intervention processes for minimally processed juices. Food Technol. 1999;53:64–7.

    Google Scholar 

  • Slongo AP, Rosenthal A, Quaresma-Camargo LM, Deliza R, Pereira-Mathias S, Falcão de Aragão GM. Modeling the growth of lactic acid bacteria in sliced ham processed by high hydrostatic pressure. LWT Food Sci Technol. 2009;42(1):303–6.

    Article  CAS  Google Scholar 

  • Smelt JPPM, Rijke AGF, Hayhurst A. Possible mechanism of high pressure inactivation of microorganisms. High Pressure Res. 1994;12(4–6):199–203.

    Article  Google Scholar 

  • Snyder OP. HACCP and regulations applied to minimally processed foods. In: Novak HC, Sapers GM, Juneja VK, editors. Microbial safety of minimally processed foods. Boca Raton: CRC Press; 2003. p. 127–50.

    Google Scholar 

  • Sobrino-López A, Martín-Belloso O. Enhancing the lethal effect of high-intensity pulsed eclectic field in milk by antimicrobial compounds as combined hurdles. J Dairy Sci. 2008;91(5):1759–68.

    Article  CAS  Google Scholar 

  • Somolinos M, Mañas P, Condon S, Pagán R, García D. Recovery of Saccharomyces cerevisiae sublethally injured cells after pulsed electric fields. Int J Food Microbiol. 2008;125:352–6.

    Article  CAS  Google Scholar 

  • Stanley KD, Golden DA, Williams RC, Weiss J. Inactivation of Escherichia coli O157:H7 by high-intensity ultrasonication in the presence of salts. Foodborne Pathog Dis. 2004;1(4):267–80.

    Article  Google Scholar 

  • Torres JA, Velazquez G. Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng. 2005;67:95–112.

    Article  Google Scholar 

  • Tribst AAL, Franchi MA, Cristianini M. Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innov Food Sci Emerg Technol. 2008;9(3):265–71.

    Article  CAS  Google Scholar 

  • US. FDA. Report on kinetics of microbial inactivation for alternative food processing technologies. 2001. htp://www.cfsan.gov/∼comm/ift−toc.html. Accessed June 2001.

  • Valero M, Recrosio N, Saura D, Muñoz N, Martí N, Lizama V. Effects of ultrasonic treatments in orange juice processing. J Food Eng. 2007;80:509–16.

    Article  Google Scholar 

  • Vannini L, Lanciotti R, Baldi D, Guerzoni ME. Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int J Food Microbiol. 2004;94:123–35.

    Article  CAS  Google Scholar 

  • van Boekel MAJS. On the use of Weibull model to describe thermal inactivation of microbial vegetative cells. Int J Food Microbiol. 2002;74:139–59.

    Article  Google Scholar 

  • Velázquez G, Vázquez P, Vázquez M, y Torres JA. Avances en el procesado de alimentos. Cienc Tecnol Aliment. 2005;4(5):353–67.

    Article  Google Scholar 

  • Welti-Chanes J, López-Malo A, Palou E, Bermúdez D, Guerrero-Beltrán JA, Barbosa-Cánovas GV. Fundamentals and applications of high pressure processing to foods. In: Barbosa-Cánovas GV, Tapia MS, Cano P, editors. Novel food processing technologies. Boca Raton FL: CRC Press; 2005. p. 157–81.

    Google Scholar 

  • Welti-Chanes J, San Martín-González F, Barbosa-Cánovas GV. Water and biological structures at high pressure. In: Buera P, Welti-Chanes J, Llilford P, Corti H, editors. Water properties of food, pharmaceutical, and biological materials. Boca Raton FL: CRC Press; 2006. p. 205–32.

    Google Scholar 

  • Welti-Chanes J, Vergara F, López-Malo A. Minimally processed foods: state of the art and future. In: Fito P, Ortega-Rodríguez E, Barbosa-Cánovas GW, editors. Food engineering 2000. New York: Chapman and Hall; 1997. p. 181–212.

    Chapter  Google Scholar 

  • Wiley R. Introduction to minimally processed refrigerated fruits and vegetables. In: Wiley RC, editor. Minimally processed fruits and vegetables. New York: Chapman and Hall; 1994a. p. 1–14.

    Chapter  Google Scholar 

  • Wiley RC, editor. Minimally processed refrigerated fruits and vegetables. New York: Chapman and Hall; 1994b.

    Google Scholar 

  • Wouters PC, Dutreux N, Smelt JPPM, Lelieveld HLM. Effect of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl Environ Microbiol. 1999;65(12):5364–71.

    CAS  Google Scholar 

  • Wuytack EY, Diels AMJ, Michiels CW. Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. Int J Food Microbiol. 2002;77:205–12.

    Article  CAS  Google Scholar 

  • Xiong R, Xie G, Edmonson GM, Sheard MA. A mathematical model for bacterial inactivation. Int J Food Microbiol. 1999;46:45–55.

    Article  CAS  Google Scholar 

  • Yeom HW, Streaker CB, Zhang QH, Min DB. Effects of pulsed electric fields on the activities of microorganisms and pectin methyl esterase in orange juice. J Food Sci. 2000;65(8):1359–62.

    Article  CAS  Google Scholar 

  • Yeom HW, Zhang QH, Chism GW. Inactivation of pectin methyl esterase in orange juice by pulsed electric fields. J Food Sci. 2002;67(6):2154–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Universidad de Buenos Aires, CONICET, and ANPCyT-BID of Argentina, as well as from Instituto Tecnológico y de Estudios Superiores de Monterrey and CONACyT of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella M. Alzamora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alzamora, S.M., Welti-Chanes, J., Guerrero, S.N., Gómez, P.L. (2012). Rational Use of Novel Technologies: A Comparative Analysis of the Performance of Several New Food Preservation Technologies for Microbial Inactivation. In: McElhatton, A., do Amaral Sobral, P. (eds) Novel Technologies in Food Science. Integrating Food Science and Engineering Knowledge into the Food Chain, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7880-6_11

Download citation

Publish with us

Policies and ethics