Skip to main content

Finding the Exosome

  • Chapter
RNA Exosome

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 702))

Abstract

We describe the events surrounding the identification of the exosome complex and the subsequent early development of the field. Like many scientific discoveries, the initial identification and characterization of the exosome was based on a combination of skill, good fortune—and the availability of cutting edge technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lygerou Z, Mitchell P, Petfalski E et al. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev 1994; 8:1423–1433.

    Article  PubMed  CAS  Google Scholar 

  2. Evans D, Marquez SM, Pace NR. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006; 31:333–341.

    Article  PubMed  CAS  Google Scholar 

  3. Henry Y, Wood H, Morrissey JP et al. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 1994; 13:2452–2463.

    PubMed  CAS  Google Scholar 

  4. Lygerou Z, Allmang C, Tollervey D et al. Accurate processing of a eukaryotic prerRNA by RNase MRP in vitro. Science 1996; 272:268–270.

    Article  PubMed  CAS  Google Scholar 

  5. Morrissey JP, Tollervey D. Birth of the snoRNPs—the evolution of RNase MRP and the eukaryotic prerRNA processing system. Trends Biochem Sci 1995; 20:78–82.

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell P, Petfalski E, Tollervey D. The 3′-end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev 1996; 10:502–513.

    Article  PubMed  CAS  Google Scholar 

  7. Rigaut G, Shevchenko A, Rutz B et al. A generic protein purification method forprotein complex characterization and proteome exploration. Nat Biotechnol 1999; 17:1030–1032.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell P, Petfalski E, Shevchenko A et al. The exosome; a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonuclease activities. Cell 1997; 91:457–466.

    Article  PubMed  CAS  Google Scholar 

  9. Dziembowski A, Lorentzen E, Conti E et al. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007; 14:15–22.

    Article  PubMed  CAS  Google Scholar 

  10. Mian IS. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res 1997; 25:3187–3195.

    Article  PubMed  CAS  Google Scholar 

  11. Benard L, Carroll K, Valle RC et al. Ski6p is a homolog of RNA-processing enzymes that affects translation of nonpoly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol Cell Biol 1998; 18:2688–2696.

    PubMed  CAS  Google Scholar 

  12. Anderson JSJ, Parker RP. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J 1998; 17:1497–1506.

    Article  PubMed  CAS  Google Scholar 

  13. Allmang C, Petfalski E, Podtelejnikov A et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev 1999; 13:2148–2158.

    Article  PubMed  CAS  Google Scholar 

  14. Chekanova JA, Shaw RJ, Wills MA et al. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 2000; 275:33158–33166.

    Article  PubMed  CAS  Google Scholar 

  15. Chekanova JA, Dutko JA, Mian IS et al. Arabidopsis thaliana exosome subunit AtRrp4p is ahydrolytic 3′→5′ exonuclease containing S1 and KH RNA-binding domains. Nucleic Acids Res 2002; 30:695–700.

    Article  PubMed  CAS  Google Scholar 

  16. Lorentzen E, Walter P, Fribourg S et al. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 2005; 12:575–581.

    Article  PubMed  CAS  Google Scholar 

  17. Görlich D, Kraft R, Kostka S et al. Importin provides a link between nuclear protein import and U snRNA export. Cell 1996; 87:21–32.

    Article  PubMed  Google Scholar 

  18. Briggs MW, Burkard KT, Butler JS. Rrp6p, the yeast homologue ofthe human PM-Scl 100-kDaautoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 1998; 273:13255–13263.

    Article  PubMed  CAS  Google Scholar 

  19. Mitchell P, Petfalski E, Houalla R et al. Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs. Mol Cell Biol 2003; 23:6982–6992.

    Article  PubMed  CAS  Google Scholar 

  20. Peng WT, Robinson MD, Mnaimneh S et al. A panoramic view of yeast noncoding RNA processing. Cell 2003; 113:919–933.

    Article  PubMed  CAS  Google Scholar 

  21. Araki Y, Takahashi S, Kobayashi T et al. Ski7p G protein interacts with the exosome and the Ski complex for 3′-to-5′ mRNA decay in yeast. EMBO J 2001; 20:4684–4693.

    Article  PubMed  CAS  Google Scholar 

  22. van Hoof A, Staples RR, Baker RE et al. Function of the ski4p (Csl4p) and Ski7p proteins in 3′-to-5′ degradation of mRNA. Mol Cell Biol 2000; 20:8230–8243.

    Article  PubMed  Google Scholar 

  23. Milligan L, Decourty L, Saveanu C et al. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008; 28:5446–5457.

    Article  PubMed  CAS  Google Scholar 

  24. Schilders G, Raijmakers R, Raats JM et al. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 2005; 33:6795–6804.

    Article  PubMed  CAS  Google Scholar 

  25. Brouwer R, Pruijn GJ, van Venrooij WJ. The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma. Arthritis Res 2001; 3:102–106.

    Article  PubMed  CAS  Google Scholar 

  26. Chen CY, Gherzi R, Ong SE et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 2001; 107:451–464.

    Article  PubMed  CAS  Google Scholar 

  27. van Hoof A, Parker R. The exosome: a proteasome for RNA? Cell 1999; 99:347–350.

    Article  PubMed  Google Scholar 

  28. Symmons MF, Jones GH, Luisi BF. Aduplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity and regulation. Structure Fold Des 2000; 8:1215–1226.

    Article  PubMed  CAS  Google Scholar 

  29. Symmons MF, Williams MG, Luisi BF et al. Running rings around RNA: asuperfamily of phosphate-dependent RNases. Trends Biochem Sci 2002; 27:11–18.

    Article  PubMed  CAS  Google Scholar 

  30. Lorentzen E, Conti E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol Cell 2005; 20:473–481.

    Article  PubMed  CAS  Google Scholar 

  31. Liu Q, Greimann JC, Lima CD. Reconstitution, activities and structure of the eukaryotic RNA exosome. Cell 2006; 127:1223–1237.

    Article  PubMed  CAS  Google Scholar 

  32. Bonneau F, Basquin J, Ebert J et al. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 2009; 139:547–559.

    Article  PubMed  CAS  Google Scholar 

  33. Houseley J, Tollervey D. The many pathways of RNA degradation. Cell 2009; 136:763–776.

    Article  PubMed  CAS  Google Scholar 

  34. Lebreton A, Tomecki R, Dziembowski A et al. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008; 456:993–996.

    Article  PubMed  CAS  Google Scholar 

  35. Schneider C, Leung E, Brown J et al. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009; 37:1127–1140.

    Article  PubMed  CAS  Google Scholar 

  36. Schaeffer D, Tsanova B, Barbas A et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 2009; 16:56–62.

    Article  PubMed  CAS  Google Scholar 

  37. Allmang C, Kufel J, Chanfreau G et al. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 1999; 18:5399–5410.

    Article  PubMed  CAS  Google Scholar 

  38. Allmang C, Mitchell P, Petfalski E et al. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 2000; 28:1684–1691.

    Article  PubMed  CAS  Google Scholar 

  39. van Hoof A, Frischmeyer PA, Dietz HC et al. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 2002; 295:2262–2264.

    Article  PubMed  Google Scholar 

  40. Hilleren P, McCarthy T, Rosbash M et al. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 2001; 413:538–542.

    Article  PubMed  CAS  Google Scholar 

  41. Bousquet-Antonelli C, Presutti C, Tollervey D. Identification of a regulated pathway for nuclear premRNA turnover. Cell 2000; 102:765–775.

    Article  PubMed  CAS  Google Scholar 

  42. Wyers F, Rougemaille M, Badis G et al. Cryptic Pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 2005; 121:725–737.

    Article  PubMed  CAS  Google Scholar 

  43. Belostotsky D. Exosome complex and pervasive transcription in eukaryotic genomes. Curr Opin Cell Biol 2009; 21:352–358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mitchell, P., Tollervey, D. (2010). Finding the Exosome. In: Jensen, T.H. (eds) RNA Exosome. Advances in Experimental Medicine and Biology, vol 702. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7841-7_1

Download citation

Publish with us

Policies and ethics