Skip to main content

Principles of Holography

  • Chapter
  • First Online:
Digital Holographic Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 162))

  • 3132 Accesses

Abstract

The basic principle of holography consists of the recording of the hologram by interference between the object wave and the reference wave followed by the diffraction and propagation of another reference wave resulting in the formation of the holographic image. This is illustrated with two elementary holograms: holography of plane waves and holography of point sources. Holography can be realized through a large range of materials and optical processes. A brief overview of the holographic processes is given below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Poon, ed. Digital holography and three-dimensional display: principles and applications (Springer, 2006).

    Google Scholar 

  2. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 1–50 (2010).

    Article  Google Scholar 

  3. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454–487 (1949).

    ADS  Google Scholar 

  4. D. Gabor, “Microscopy by reconstructed wavefronts: II,” Proc. Phys. Soc. B64, 449–469 (1951).

    ADS  Google Scholar 

  5. E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 981–986 (1965).

    Article  ADS  Google Scholar 

  6. R. W. Meier, “Magnification and 3rd-Order Aberrations in Holography,” Journal of the Optical Society of America 55, 987–992 (1965).

    Article  ADS  Google Scholar 

  7. P. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2 ed. (Cambridge University Press, 1996).

    Google Scholar 

  8. R. A. Fisher, Optical Phase Conjugation (Elsevier, 1983).

    Google Scholar 

  9. A. Yariv, “Phase Conjugate Optics and Real-Time Holography,” Ieee Journal of Quantum Electronics 14, 650–660 (1978).

    Article  ADS  Google Scholar 

  10. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Gunther, R. M. Macfarlane, and G. T. Sincerbox, “Pixel-matched holographic data storage with megabit pages,” Optics Letters 22, 1509–1511 (1997).

    Article  ADS  Google Scholar 

  11. X. A. Shen, A. D. Nguyen, J. W. Perry, D. L. Huestis, and R. Kachru, “Time-domain holographic digital memory,” Science 278, 96–100 (1997).

    Article  Google Scholar 

  12. M. K. Kim, and R. Kachru, “Storage and Phase Conjugation of Multiple Images Using Backward-Stimulated Echoes in Pr-3+−Laf3,” Optics Letters 12, 593–595 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung K. Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, M.K. (2011). Principles of Holography. In: Digital Holographic Microscopy. Springer Series in Optical Sciences, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7793-9_3

Download citation

Publish with us

Policies and ethics