Skip to main content

A Review of Mathematical Models for T Cell Receptor Triggering and Antigen Discrimination

  • Chapter
  • First Online:
Mathematical Models and Immune Cell Biology

Abstract

Theoretical studies of T cell receptor signalling and T cell activation have become a well-known part of immunology and the models described in this chapter provide a good basis for future studies. Nonetheless it is crucial that, over the next few years, modelers seek to expand the scope of their efforts and provide a more comprehensive, predictive and multifaceted approach to T cell receptor signalling. Currently available models usually provide qualitative results and cannot be confidently parameterized. To obtain more precise and predictive models will be difficult but is plausible given improvements in quantitative experimental techniques and their quick adoption by experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571

    Article  PubMed  CAS  Google Scholar 

  2. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419:845–849

    Article  PubMed  CAS  Google Scholar 

  3. Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM (1994) Partial T cell signaling: Altered phospho-ζ and lack of ZAP-70 recruitment in APL-induced T cell anergy. Cell 79:913–922

    Article  PubMed  CAS  Google Scholar 

  4. Kersh GJ, Miley MJ, Nelson CA, Grakoui A, Horvath S, Donermeyer DL, Kappler J, Allen PM, Fremont DH (2001) Structural and functional consequences of altering a peptide MHC anchor residue. J Immunol 166:3345–3354

    PubMed  CAS  Google Scholar 

  5. Jönsson U, Fägerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Löfás S, Persson B, Roos H, Rönnberg I (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. BioTechniques 11:620–627

    PubMed  Google Scholar 

  6. Malmqvist M (1993) Biospecific interaction analysis using biosensor technology. Nature 361:186–187

    Article  PubMed  CAS  Google Scholar 

  7. van der Merwe PA (2001) The TCR triggering puzzle. Immunity 14:665–668

    Article  PubMed  Google Scholar 

  8. Tolentino TP, Wu J, Zarnitsyana VI, Fang Y, Dustin ML, Zhu C (2008) Measuring diffusion and binding kinetics by contact area FRAP. Biophys J 95:920–930

    Article  PubMed  CAS  Google Scholar 

  9. Dushek O, Das R, Coombs D (2009) A role for rebinding in rapid and reliable T cell responses to antigen. PLoS Comput Biol 5:e1000578

    Article  PubMed  Google Scholar 

  10. Aleksic M, Dushek O, Zhang H, Shenderov E, Chen JL, Cerundolo V, Coombs D, van der Merwe PA (2010) Dependence of T cell antigen recognition on T cell receptor-peptide MHC confinement time. Immunity 32:1–12

    Article  Google Scholar 

  11. Wofsy C, Coombs D, Goldstein B (2001) Calculations show substantial serial engagement of T cell receptors. Biophys J 80:606–612

    Article  PubMed  CAS  Google Scholar 

  12. Qi S, Krogsgaard M, Davis MM, Chakraborty AK (2006) Molecular flexibility can influence the stimulatory ability of receptor-ligand interactions at cell-cell junctions. Proc Natl Acad Sci USA 103:4416–4421

    Article  PubMed  CAS  Google Scholar 

  13. Krogsgaard M, Prado N, Adams EJ, He XL, Chow DC, Wilson DB, Garcia KC, Davis MM (2003) Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol Cells 12:1367–1378

    Article  CAS  Google Scholar 

  14. van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684

    Article  PubMed  Google Scholar 

  15. Feinerman O, Germain RN, Altan-Bonnet G (2008) Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol Immunol 45:619–631

    Article  PubMed  CAS  Google Scholar 

  16. Holler PD, Kranz DM (2003) Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18:255–264

    Article  PubMed  CAS  Google Scholar 

  17. Tian S, Maile R, Collins EJ, Frelinger JA (2007) CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol 179:2952–2960

    PubMed  CAS  Google Scholar 

  18. Wooldridge L, van den Berg HA, Glick M, Gostick E, Laugel B, Hutchinson SL, Milicic A, Brenchley JM, Douek DC, Price DA, Sewell AK (2005) Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface. J Biol Chem 280:27491–27501

    Article  PubMed  CAS  Google Scholar 

  19. van den Berg HA, Rand DA, Burroughs NJ (2001) A reliable and safe T cell repertoire based on low-affinity T cell receptors. J Theor Biol 209:465–486

    Article  Google Scholar 

  20. McKeithan K (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 92:5042–5046

    Article  PubMed  CAS  Google Scholar 

  21. Hopfield JJ (1974) Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139

    Article  PubMed  CAS  Google Scholar 

  22. Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57:587–595

    Article  PubMed  CAS  Google Scholar 

  23. van den Berg HA, Burroughs NJ, Rand DA (2002) Quantifying the strength of ligand antagonism in TCR triggering. Bull Math Biol 64:781–808

    Article  Google Scholar 

  24. Coombs D, Kalergis AM, Nathenson SG, Wofsy C, Goldstein B (2002) Activated TCRs remain marked for internalization after dissociation from pMHC. Nat Immunol 3:926–931

    Article  PubMed  CAS  Google Scholar 

  25. Chan C, George AJT, Stark J (2003) T cell sensitivity and specificity - kinetic proofreading revisited. Discrete Continuous Dyn Syst - Series B 3:343–360

    Article  Google Scholar 

  26. Gonzalez PA, Carreno LJ, Coombs D, Mora JE, Palmieri E, Goldstein B, Nathenson SG, Kalergis AM (2005) T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc Natl Acad Sci USA 102: 4824–4829

    Article  PubMed  CAS  Google Scholar 

  27. Wedagedera JR, Burroughs NJ (2006) T-cell activation: A queuing theory analysis at low agonist density. Biophys J 91:1604–1618

    Article  PubMed  CAS  Google Scholar 

  28. George AJT, Stark J, Chan C (2005) Understanding specificity and sensitivity of T-cell recognition. Trends Immunol 26:653–659

    Article  PubMed  CAS  Google Scholar 

  29. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202:1031–1036

    Article  PubMed  CAS  Google Scholar 

  30. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127

    Article  PubMed  CAS  Google Scholar 

  31. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchia A (1995) Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151

    Article  PubMed  CAS  Google Scholar 

  32. Dushek O, Coombs D (2008) Analysis of serial engagement and peptide-MHC transport in T cell receptor microclusters. Biophys J 94:3447–3460

    Article  PubMed  CAS  Google Scholar 

  33. Torigoe C, Inman JK, Metzger H (1998) An unusual mechanism for ligand antagonism. Science 281:568–572

    Article  PubMed  CAS  Google Scholar 

  34. Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B (2003) Investigation of early events in FceRI-mediated signaling using a detailed mathematical model. J Immunol 170:3769–3781

    PubMed  CAS  Google Scholar 

  35. Goldstein B, Coombs D, Faeder JR, Hlavacek WS (2008) Kinetic proofreading model. Adv Exp Med Biol 640:82–94

    Article  PubMed  CAS  Google Scholar 

  36. Stefanová I, Hemmer B, Vergelli M, Martin R, Biddison WE, Germain RN (2003) TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 4:248–254

    Article  PubMed  Google Scholar 

  37. Altan-Bonnet G, Germain RN (2005) Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356

    Article  PubMed  Google Scholar 

  38. Lipniacki T, Hat B, Faeder JR, Hlavacek WS (2008) Stochastic effects and bistability in T cell receptor signaling. J Theor Biol 254:110–122

    Article  PubMed  CAS  Google Scholar 

  39. Lauffenburger D, Linderman J (1993) Receptors: Models for binding, trafficking, and signaling. Oxford University Press, Oxford

    Google Scholar 

  40. Rabinowitz JD, Beeson C, Lyons DS, Davis MM, McConnell HM (1996) Kinetic discrimination in T-cell activation. Proc Natl Acad Sci USA 93:1401

    Article  PubMed  CAS  Google Scholar 

  41. Chan C, George AJT, Stark J (2001) Cooperative enhancement of specificity in a lattice of T cell receptors. Proc Natl Acad Sci USA 98:5758–5763

    Article  PubMed  CAS  Google Scholar 

  42. Chan C, Stark J, George AJT (2004) Feedback control of T-cell receptor activation. Proc R Soc B: Biol Sci 271:931–939

    Article  CAS  Google Scholar 

  43. Wylie DC, Das J, Chakraborty AK (2007) Sensitivity of T cells to antigen and antagonism emerges from differential regulation of the same molecular signaling module. Proc Natl Acad Sci USA 104:5533–5538

    Article  PubMed  CAS  Google Scholar 

  44. Feinerman O, Veiga J, Dorfman JR, Germain RN, Altan-Bonnet G (2008) Variability and robustness in T cell activation from regulated heterogeneity in protein levels. Science 321:1081–1084

    Article  PubMed  CAS  Google Scholar 

  45. Casal A, Sumen C, Reddy TE, Alber MS, Lee PP (2005) Agent-based modeling of the context dependency in T cell recognition. J Theor Biol 236:376–391

    Article  PubMed  CAS  Google Scholar 

  46. Wylie DC, Hori Y, Dinner AR, Chakraborty AK (2006) A hybrid deterministic-stochastic algorithm for modeling cell signaling dynamics in spatially inhomogeneous environments and under the influence of external fields. J Phys Chem B 110:12749–12765

    Article  PubMed  CAS  Google Scholar 

  47. Dushek O (2008) Mathematical modeling in cellular immunology: T cell activation and parameter estimation. PhD thesis, University of British Columbia

    Google Scholar 

  48. Choudhuri K, Kearney A, Bakker TR, van der Merwe PA (2005) Immunology: How do T cells recognize antigen? Curr Opin Biol 15:R382–R385

    CAS  Google Scholar 

  49. Choudhuri K, van der Merwe PA (2007) Molecular mechanisms involved in T cell receptor triggering. Semin Immunol 19:255–261

    Article  PubMed  CAS  Google Scholar 

  50. Ma Z, Janmey PA, Finkel TH (2008) The receptor deformation model of TCR triggering. FASEB J 22:1002–1008

    Article  PubMed  CAS  Google Scholar 

  51. Aivazian D, Stern LJ (2000) Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nature 7:1023–1026

    CAS  Google Scholar 

  52. Gil D, Schamel WWA, Montoya M, Sánchez-Madrid F, Alarcón B (2002) Recruitment of Nck by CD3ε reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–912

    Article  PubMed  CAS  Google Scholar 

  53. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135:702–713

    Article  PubMed  CAS  Google Scholar 

  54. Gil D, Schrum AG, Alarcon B, Palmer E (2005) T cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med 201:517–522

    Article  PubMed  CAS  Google Scholar 

  55. Mingueneau M, Sansoni A, Grégoire C, Roncagalli R, Aguado E, Weiss A, Malissen M, Malissen B (2008) The proline-rich sequence of CD3epsilon controls T cell antigen receptor expression on and signaling potency in preselection CD4 + CD8 +  thymocytes. Nat Immunol 9:522–532

    Article  PubMed  CAS  Google Scholar 

  56. Heldin CH (1995) Dimerization of cell surface receptors in signal transduction. Cell 80: 213–223

    Article  PubMed  CAS  Google Scholar 

  57. Cochran JR, Cameron TO, Stern LJ (2000) The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12:241–250

    Article  PubMed  CAS  Google Scholar 

  58. Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434:238–243

    Article  PubMed  CAS  Google Scholar 

  59. Bachmann MF, Salzmann M, Oxenius A, Ohashi PS (1998) Formation of TCR dimers/trimers as a crucial step for T cell activation. Eur J Immunol 28:2571–2579

    Article  PubMed  CAS  Google Scholar 

  60. Utzny C, Coombs D, Müller S, Valitutti S (2006) Analysis of peptide/MHC-induced TCR downregulation: Deciphering the triggering kinetics. Cell Biochem Biophys 46:101–111

    Article  PubMed  CAS  Google Scholar 

  61. Salzmann M, Bachmann MF (1998) The role of T cell receptor dimerization for T cell antagonism and T cell specificity. Mol Immunol 35:271–277

    Article  PubMed  CAS  Google Scholar 

  62. Bachmann MF, Ohashi PS (1999) The role of T-cell receptor dimerization in T-cell activation. Immunol Today 20:568–576

    Article  PubMed  CAS  Google Scholar 

  63. Wyer J, Willcox B, Gao G, Gerth U, Davis S, Bell J, van der Merwe P, Jakobsen B (1999) T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10:219–225

    Article  PubMed  CAS  Google Scholar 

  64. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6:1253–1262

    Article  PubMed  CAS  Google Scholar 

  65. Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: Implications for T-cell function. Immunol Today 17:177–187

    Article  PubMed  CAS  Google Scholar 

  66. van der Merwe PA, Davis SJ, Shaw AS, Dustin ML (2000) Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 12:5–21

    Article  Google Scholar 

  67. Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    Article  PubMed  CAS  Google Scholar 

  68. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  PubMed  CAS  Google Scholar 

  69. Burroughs NJ, Lazic Z, van der Merwe PA (2006) Ligand detection and discrimination by spatial relocalization: A kinase-phosphatase segregation model of TCR activation. Biophys J 91:1619–1629

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

DC and OD acknowledge financial support from the National Science and Engineering Research Council of Canada and the Mathematics of Information Technology and Complex Systems National Centre of Excellence. PAV is supported by the UK Medical Research Council. We also thank Salvatore Valitutti and Raibatak Das for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Coombs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coombs, D., Dushek, O., van der Merwe, P.A. (2011). A Review of Mathematical Models for T Cell Receptor Triggering and Antigen Discrimination. In: Molina-París, C., Lythe, G. (eds) Mathematical Models and Immune Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7725-0_2

Download citation

Publish with us

Policies and ethics