Skip to main content

Thymocyte Development

  • Chapter
  • First Online:
Mathematical Models and Immune Cell Biology

Abstract

T cell development within the thymus involves the dynamic interaction of thymocytes with a unique heterogeneous microenvironment formed predominantly by a three-dimensional network of specialized thymic epithelium. Multiple developmental checkpoints have been identified during thymocyte maturation, including selective recruitment to the thymus, αβ versus γδ T cell fate decisions, positive and negative selection and finally regulated egress of mature T cells from the thymus to the periphery. The controlled migration of thymocytes within the thymus ensures that developing T cells undergo a series of tightly-regulated interactions with stromal cells of the thymus, ensuring that, firstly, only cells bearing a functional TCR are selected for survival and onward differentiation via positive selection and, secondly, that autoreactive T cells capable of responding to self-antigens and causing autoimmune disease are deleted via negative selection. The stringent selection mechanisms enforced within the thymus are demonstrated by the fact that only 2–5% of thymocytes generated within the thymus mature to form naïve T cells capable of forming a functional, self-tolerant component of the peripheral adaptive immune system. Whilst many of the developmental processes occurring during thymocyte development have become elucidated over the past several years, systems directed towards modelling the dynamic migratory patterns and real-time cellular interactions will radically advance our understanding of how such pivotal cells of the immune system are generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Petrie H, Zúñiga-Pflücker J (2007) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 25:649–679

    Article  PubMed  CAS  Google Scholar 

  2. Feyerabend T, Terszowski G, Tietz A, Blum C, Luche H, Gossler A, Gale N, Radtke F, Fehling H, Rodewald H (2009) Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms. Immunity 30: 67–79

    Article  PubMed  CAS  Google Scholar 

  3. Di Santo J, Rodewald H (1998) In vivo roles of receptor tyrosine kinases and cytokine receptors in early thymocyte development. Curr Opin Immunol 10:196–207

    Article  PubMed  Google Scholar 

  4. Crompton T, Outram S, Buckland J, Owen M (1998) Distinct roles of the interleukin-7 receptor chain in fetal and adult thymocyte development revealed by analysis of interleukin-7 receptor-deficient mice. Eur J Immunol 28:1859–1866

    Article  PubMed  CAS  Google Scholar 

  5. Boehm T, Scheu S, Pfeffer K, Bleul C (2003) Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LT {beta} R. J Exp Med 198:757

    Article  PubMed  CAS  Google Scholar 

  6. Sutherland J, Goldberg G, Hammett M, Uldrich A, Berzins S, Heng T, Blazar B, Millar J, Malin M, Chidgey A (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741

    PubMed  CAS  Google Scholar 

  7. Goldschneider I (2006) Cyclical mobilization and gated importation of thymocyte progenitors in the adult mouse: evidence for a thymus-bone marrow feedback loop. Immunol Rev 209:58–75

    Article  PubMed  Google Scholar 

  8. Prockop S, Petrie H (2004) Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol 173:1604

    PubMed  CAS  Google Scholar 

  9. Shortman K, Egerton M, Spangrude G, Scollay R (1990) The generation and fate of thymocytes. Semin Immunol 2:3

    PubMed  CAS  Google Scholar 

  10. Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y (2006) Coordination between CCR7-and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108:2531

    Article  PubMed  CAS  Google Scholar 

  11. Jenkinson W, Rossi S, Parnell S, Agace W, Takahama Y, Jenkinson E, Anderson G (2007) Chemokine receptor expression defines heterogeneity in the earliest thymic migrants. Eur J Immunol 37:2090–2096

    Article  PubMed  CAS  Google Scholar 

  12. Rossi F, Corbel S, Merzaban J, Carlow D, Gossens K, Duenas J, So L, Yi L, Ziltener H (2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol 6:626–634

    Article  PubMed  CAS  Google Scholar 

  13. Mori K, Itoi M, Tsukamoto N, Kubo H, Amagai T (2007) The perivascular space as a path of hematopoietic progenitor cells and mature T cells between the blood circulation and the thymic parenchyma. Int Immunol 19:745

    Article  PubMed  CAS  Google Scholar 

  14. Kelly K, Scollay R (1990) Analysis of recent thymic emigrants with subset-and maturity-related markers. Int Immunol 2:419

    Article  PubMed  CAS  Google Scholar 

  15. McCaughtry T, Wilken M, Hogquist K (2007) Thymic emigration revisited. J Exp Med 204:2513–2520

    Article  PubMed  CAS  Google Scholar 

  16. Ciofani M, Knowles G, Wiest D, von Boehmer H, Zúñiga-Pflücker J (2006) Stage-specific and differential notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25:105–116

    Article  PubMed  CAS  Google Scholar 

  17. Livak F, Tourigny M, Schatz D, Petrie H (1999) Characterization of TCR gene rearrangements during adult murine T cell development. J Immunol 162:2575

    PubMed  CAS  Google Scholar 

  18. Capone M, Hockett R, Zlotnik A (1998) Kinetics of T cell receptor β, γ, and δ rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44 +  CD25 +  Pro-T thymocytes. Proc Natl Acad Sci USA 95:12522

    Article  PubMed  CAS  Google Scholar 

  19. Guo J, Hawwari A, Li H, Sun Z, Mahanta S, Littman D, Krangel M, He Y (2002) Regulation of the tcrα repertoire by the survival window of CD4 +  CD8 +  thymocytes. Nat Immunol 3: 469–476

    Article  PubMed  Google Scholar 

  20. Lind E, Prockop S, Porritt H, Petrie H (2001) Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 194:127

    Article  PubMed  CAS  Google Scholar 

  21. Takahama Y, Letterio J, Suzuki H, Farr A, Singer A (1994) Early progression of thymocytes along the CD4/CD8 developmental pathway is regulated by a subset of thymic epithelial cells expressing transforming growth factor beta. J Exp Med 179:1495

    Article  PubMed  CAS  Google Scholar 

  22. Plotkin J, Prockop S, Lepique A, Petrie H (2003) Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol 171:4521

    PubMed  CAS  Google Scholar 

  23. Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, Petrie H, Forster R (2004) Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 200:481

    Article  PubMed  CAS  Google Scholar 

  24. Benz C, Heinzel K, Bleul C (2004) Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur J Immunol 34:3652–3663

    Article  PubMed  CAS  Google Scholar 

  25. Prockop S, Palencia S, Ryan C, Gordon K, Gray D, Petrie H (2002) Stromal cells provide the matrix for migration of early lymphoid progenitors through the thymic cortex. J Immunol 169:4354

    PubMed  CAS  Google Scholar 

  26. Ueno T, Saito F, Gray D, Kuse S, Hieshima K, Nakano H, Kakiuchi T, Lipp M, Boyd R, Takahama Y (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200:493

    Article  PubMed  CAS  Google Scholar 

  27. Yun T, Bevan M (2001) The Goldilocks conditions applied to T cell development. Nat Immunol 2:13

    Article  PubMed  CAS  Google Scholar 

  28. Davey G, Schober S, Endrizzi B, Dutcher A, Jameson S, Hogquist K (1998) Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J Exp Med 188:1867

    Article  PubMed  CAS  Google Scholar 

  29. Lucas B, Stefanova I, Yasutomo K, Dautigny N, Germain R (1999) Divergent changes in the sensitivity of maturing T cells to structurally related ligands underlies formation of a useful T cell repertoire. Immunity 10:367–376

    Article  PubMed  CAS  Google Scholar 

  30. Bousso P, Bhakta N, Lewis R, Robey E (2002) Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Sci STKE 296:1876

    CAS  Google Scholar 

  31. Bhakta N, Oh D, Lewis R (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6:143

    Article  PubMed  CAS  Google Scholar 

  32. Witt C, Raychaudhuri S, Schaefer B, Chakraborty A, Robey E (2005) Directed migration of positively selected thymocytes visualized in real time. PLoS Biol 3:1062

    CAS  Google Scholar 

  33. Ebert P, Ehrlich L, Davis M (2008) Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29:734–745

    Article  PubMed  CAS  Google Scholar 

  34. Wong P, Goldrath A, Rudensky A (2000) Competition for specific intrathymic ligands limits positive selection in a TCR transgenic model of CD4 +  T cell development. J Immunol 164:6252

    PubMed  CAS  Google Scholar 

  35. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8 +  T cell development by thymus-specific proteasomes. Sci STKE 316:1349

    CAS  Google Scholar 

  36. Sun G, Liu X, Mercado P, Jenkinson S, Kypriotou M, Feigenbaum L, Galéra P, Bosselut R (2005) The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat Immunol 6:373–381

    Article  PubMed  CAS  Google Scholar 

  37. Wilkinson B, Jeff Y, Han P, Rufner K, Goularte O, Kaye J (2002) TOX: an HMG box protein implicated in the regulation of thymocyte selection. Nat Immunol 3:272–280

    Article  PubMed  CAS  Google Scholar 

  38. Taniuchi I, Osato M, Egawa T, Sunshine M, Bae S, Komori T, Ito Y, Littman D (2002) Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111:621–633

    Article  PubMed  CAS  Google Scholar 

  39. Germain R (2002) T-cell development and the CD4–CD8 lineage decision. Nat Rev Immunol 2:309–322

    Article  PubMed  CAS  Google Scholar 

  40. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G, Salmon P (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492

    Article  PubMed  CAS  Google Scholar 

  41. Kirberg J, Berns A, Boehmer H (1997) Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J Exp Med 186:1269

    Article  PubMed  CAS  Google Scholar 

  42. Alberola-Lla J, Forbush K, Seger R, Krebs E, Perlmutter R (1995) Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373:620–623

    Article  Google Scholar 

  43. Alberola-Ila J, Hogquist K, Swan K, Bevan M, Perlmutter R (1996) Positive and negative selection invoke distinct signaling pathways. J Exp Med 184:9

    Article  PubMed  CAS  Google Scholar 

  44. Anderson M, Venanzi E, Klein L, Chen Z, Berzins S, Turley S, von Boehmer H, Bronson R, Dierich A, Benoist C (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298:1395

    Article  PubMed  CAS  Google Scholar 

  45. DeVoss J, Hou Y, Johannes K, Lu W, Liou G, Rinn J, Chang H, Caspi R, Fong L, Anderson M (2006) Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J Exp Med 203:2727

    Article  PubMed  CAS  Google Scholar 

  46. White A, Withers D, Parnell S, Scott H, Finke D, Lane P, Jenkinson E, Anderson G (2008) Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input. Eur J Immunol 38:942–947

    Article  PubMed  CAS  Google Scholar 

  47. Jordan M, Boesteanu A, Reed A, Petrone A, Holenbeck A, Lerman M, Naji A, Caton A (2001) Thymic selection of CD4 + CD25 +  regulatory T cells induced by an agonist self-peptide. Nat Immunol 2:301–306

    Article  PubMed  CAS  Google Scholar 

  48. Baldwin K, Trenchak B, Altman J, Davis M (1999) Negative selection of T cells occurs throughout thymic development. J Immunol 163:689

    PubMed  CAS  Google Scholar 

  49. Akiyama T, Maeda S, Yamane S, Ogino K, Kasai M, Kajiura F, Matsumoto M, Inoue J (2005) Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Sci STKE 308:248

    CAS  Google Scholar 

  50. Amsen D, Kruisbeek A (1998) Thymocyte selection: not by TCR alone. Immunol Rev 165:209–230

    Article  PubMed  CAS  Google Scholar 

  51. Gallegos A, Bevan M (2004) Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med 200:1039

    Article  PubMed  CAS  Google Scholar 

  52. McCaughtry T, Baldwin T, Wilken M, Hogquist K (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205(11): 2575–2584

    Article  PubMed  CAS  Google Scholar 

  53. Ladi E, Schwickert T, Chtanova T, Chen Y, Herzmark P, Yin X, Aaron H, Chan S, Lipp M, Roysam B (2008) Thymocyte-dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. J Immunol 181:7014

    PubMed  CAS  Google Scholar 

  54. Anderson G, Partington K, Jenkinson E (1998) Differential effects of peptide diversity and stromal cell type in positive and negative selection in the thymus. J Immunol 161:6599

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Jenkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jenkinson, W., Jenkinson, E., Anderson, G. (2011). Thymocyte Development. In: Molina-París, C., Lythe, G. (eds) Mathematical Models and Immune Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7725-0_1

Download citation

Publish with us

Policies and ethics