Skip to main content

Polymer-Crosslinked Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Polymer-crosslinked aerogels bear a conformal polymer coating that connects covalently the skeletal nanoparticles of otherwise typical aerogels. The bulk density remains low, but the specific compressive strength of the resulting materials is higher than those of mild steel and aluminum, while the ability to store energy may surpass that of armor-grade ceramics. This chapter places polymer-crosslinked aerogels in the broader perspective of polymer/sol–gel composites, while the effects of the crosslinking chemistry and network morphology are reviewed from a mechanical property point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kistler S S (1931) Coherent expanded aerogels and jellies. Nature 127: 3211

    Google Scholar 

  2. Kistler S S (1932) Coherent expanded-aerogels. J Phys Chem 36: 52–63

    Article  CAS  Google Scholar 

  3. Swann S Jr, Appel E G, Kistler S S (1934) Thoria aërogel catalyst: aliphatic esters to ketones. Ind Eng Chem 26: 1014–1014

    Article  CAS  Google Scholar 

  4. Kistler S S, Caldwell A G (1934) Thermal conductivity of silica aërogel. Ind Eng Chem 26: 658–662

    Article  CAS  Google Scholar 

  5. Kistler S S, Swann S Jr. Appel E G (1934) Aërogel catalysts – thoria: preparation of catalyst and conversions of organic acids to ketones. Ind Eng Chem 26: 388–391

    Article  CAS  Google Scholar 

  6. Kistler S S (1935) The relationship between heat conductivity and structure in silica aerogel. J Phys Chem 39: 79–86

    Article  CAS  Google Scholar 

  7. Kearby K, Kistler S S, Swann S Jr. (1938) Aerogel catalyst: conversion of alcohols to amines. Ind Eng Chem 30: 1082–1086

    Article  CAS  Google Scholar 

  8. Kistler S S, Fisher E A, Freeman I R (1943) Sorption and surface area in silica aerogel. J Am Chem Soc 65: 1909–1919

    Article  CAS  Google Scholar 

  9. Peri J B (1966) Infrared study of OH and NH, groups on the surface of a dry silica aerogel. J Phys Chem 70: 2937–2945

    Article  CAS  Google Scholar 

  10. Teichner S J (1972) Method of preparing inorganic aerogels. US Patent: 3 672 833

    Google Scholar 

  11. Gesser H D, Goswami P C (1989) Aerogels and related porous materials. Chem Rev 89: 765–788

    Article  CAS  Google Scholar 

  12. Hench L L, West J K (1990) The sol-gel process. Chem Rev 90: 33–72

    Article  CAS  Google Scholar 

  13. Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry, structure and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  14. Pierre A C, Pajong G M (2002) Chemistry of aerogels and their applications. Chem Rev 102: 4243–4265

    Article  CAS  Google Scholar 

  15. Hrubesh L W, Poco J F (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188: 46–53

    Article  CAS  Google Scholar 

  16. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non-Cryst Solids 225: 364–368

    Article  CAS  Google Scholar 

  17. Fricke J, Emmerling A (1998) Aerogels-recent progress in production techniques and novel applications. J Sol-Gel Sci Tech 13: 299–303

    Article  CAS  Google Scholar 

  18. Akimov Y K (2002) Fields of application of aerogels (review). Instr Exp Techniques 46: 287–299

    Article  Google Scholar 

  19. Pajonk G M (2003) Some applications of silica aerogels. Colloid Polym Sci 281: 637–651

    Article  CAS  Google Scholar 

  20. Smirnova I, Suttiruengwong S, Arlt W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst. Solids 350: 54–60

    Article  CAS  Google Scholar 

  21. Prakash S S, Brinker C J, Hurd A J, Rao S M (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374: 439–443

    Article  CAS  Google Scholar 

  22. Rao A P, Rao A V, Pajonk G M (2007) Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Applied Surface Science 253: 6032–6040

    Article  CAS  Google Scholar 

  23. Rao A P, Rao A V (2008) Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. J Non-Cryst Solids 354: 10–18

    Article  CAS  Google Scholar 

  24. Rao A V, Bhagat S D, Hirashima H, Pajonk G M (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interf Sci 300: 279–285

    Article  CAS  Google Scholar 

  25. Hegde N D, Rao A V (2007) Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process. J Mater Sci 42: 6965–6971

    Article  CAS  Google Scholar 

  26. Nadargi D Y, Latthe S S, Hirashima H, Rao A V (2009) Studies on rheological properties of methyltriethoxysilane (MTES) based flexible superhydrophobic silica aerogels. Microporous and Mesoporous Materials 117: 617–626

    Article  CAS  Google Scholar 

  27. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19: 1589–1593

    Article  CAS  Google Scholar 

  28. Jones S M (2006) Aerogel: space exploration applications. J Sol-Gel Sci Techn 40: 351–357

    Article  CAS  Google Scholar 

  29. Jones S M (2007) A method for producing gradient density aerogel. J Sol-Gel Sci Techn 44: 255–258

    Article  CAS  Google Scholar 

  30. She J H, Ohji T (2002) Porous mullite ceramics with high strength. J Mater Sci Lett 21: 1833–1834

    Article  CAS  Google Scholar 

  31. Oh S T, Tajima K, Ando M, Ohji T (2000) Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing. J Am Ceram Soc 83: 1314–1316

    Article  CAS  Google Scholar 

  32. Ma H-S, Roberts A P, Prévost J-H, Jullien R, Scherer G W (2000) Mechanical structure-property relationship of aerogels. J Non-Cryst Solids 277: 127–141

    Article  CAS  Google Scholar 

  33. Woignier T, Phalippou J (1988) Mechanical strength of silica aerogels. J Non-Cryst Solids 100: 404–408

    Article  CAS  Google Scholar 

  34. Hæreid S, Anderson J, Einarsrud M A, Hua D W, Smith D M (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non-Cryst Solids 185: 221–226

    Article  Google Scholar 

  35. Lucas E M, Doescher M S, Ebenstein D M, Wald K J, Rolison D R (2004) Silica aerogels with enhanced durability, 30-nm mean pore-size, and improved immersibility in liquids. J Non-Cryst Solids 350: 244–252

    Article  CAS  Google Scholar 

  36. Einarsrud M A, Kirkedelen M B, Nilsen E, Mortensen K, Samseth J (1998) Structural development of silica gels aged in TEOS. J Non-Cryst Solids 231: 10–16

    Article  CAS  Google Scholar 

  37. Sanchez C, Robot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18: 1007–1047

    CAS  Google Scholar 

  38. Hu Y, Mackenzie J D (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27: 4415–4420

    Article  CAS  Google Scholar 

  39. Novak B M, Auerbach D, Verrier C (1994) Low-density, mutually interpenetrating organic-inorganic composite materials via supercritically drying techniques. Chem Mater 6: 282–286

    Article  CAS  Google Scholar 

  40. Gould G, Ou D, Begag R, Rhine W E (2008) Highly-transparent polymer modified silica aerogels. Polymer Preprints 49: 534–535

    Article  CAS  Google Scholar 

  41. Sanchez C, Ribot F, Lebeau B (1999) Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J Mater Chem 9: 35–44

    Article  CAS  Google Scholar 

  42. Pope E J A, Asami M, Mackenzie J D (1989) Transparent silica gel-PMMA composites. J Mater Res 4: 1018–1026

    Article  CAS  Google Scholar 

  43. Philipp G, Schmidt H (1984) New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process. J Non-Cryst Solids 63: 283–292

    Article  CAS  Google Scholar 

  44. Huang H H, Orler B, Wilkes G L (1987) Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules 20: 1322–1330

    Article  CAS  Google Scholar 

  45. Kramer S J, Rubio-Alonso F, Mackenzie J D (1998) Organically modified silicate aerogels, “aeromosils.” Mat Res Soc Symp Proc 435: 295–300

    Article  Google Scholar 

  46. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-M M, (2002) Nanoengineering strong silica aerogels. Nano Lett 2: 957–960

    Article  CAS  Google Scholar 

  47. Mizushima Y, Hori M (1994) Preparation and properties of alumina-organic compound aerogels. J Non-Cryst Solids 170: 215–222

    Article  CAS  Google Scholar 

  48. Yim T-J, Kim S Y, Yoo K-P (2002) Fabrication and thermophysical characterization of nano-porous silica-polyurethane hybrid aerogels by sol-gel processing and supercritical solvent drying technique. Korean J Chem Eng 19: 159–166

    Article  CAS  Google Scholar 

  49. Leventis, N (2007) Three Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. Acc Chem Res 40:874–884

    Article  CAS  Google Scholar 

  50. Zhang G, Dass A, Rawashdeh A-M M, Thomas J, Counsil J A, Sotiriou-Leventis C, Fabrizio E F, Ilhan F, Vassilaras P, Scheiman D A, McCorkle L, Palczer A, Johnston J C, Meador M A B, Leventis N (2004) Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids 350: 152–164

    Article  CAS  Google Scholar 

  51. Leventis N, Palczer A, McCorkle L, Zhang G, Sotiriou-Leventis C (2005) Nanoengineering silica-polymer composite aerogels with no need for supercritical fluid drying. J Sol-Gel Sci Techn 35: 99–105

    Article  CAS  Google Scholar 

  52. Lowen W K, Broge E C (1961) Effects of dehydration and chemisorbed materials on the surface properties of amorphous silica. J Phys Chem 65: 16–19

    Article  CAS  Google Scholar 

  53. Hüsing N, Schubert U, Mezei R, Fratzl P, Riegel B, Kiefer W, Kohler D, Mader W (1999) Formation and structure of gel networks from Si(OEt)4/(MeO)3Si(CH2)3NR´2 mixtures (NR´2=NH2 or NHCH2CH2NH2). Chem Mater 11: 451–457

    Article  Google Scholar 

  54. Katti A, Shimpi N, Roy S, Lu H, Fabrizio E F, Dass A, Capadona L A, Leventis N (2006) Chemical, physical and mechanical characterization of isocyanate-crosslinked amine-modified silica aerogels. Chem Mater 18: 285–296

    Article  CAS  Google Scholar 

  55. Shigley J E, Mischke C R M (2001) Mechanical Engineering Design 6th ed, New York, p 1206

    Google Scholar 

  56. Meador M A B, Capadona L A, MacCorkle L, Papadopoulos D S, Leventis N (2007) Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels. Chem Mater 19: 2247–2260

    Article  CAS  Google Scholar 

  57. Vivod S L, Meador M A B, Nguyen B N, Quade D, Randall J (2008) Di-isocyanate crosslinked aerogels with 1,6-bis(trimethoxysilyl)hexane incorporated in silica backbone. Polym Preprints 49: 521–522

    CAS  Google Scholar 

  58. Vivod S L, Meador M A B, Capadona L A, Sullivan R M, Ghosn L J, Clark N, McCorkle L, Quade D J (2008) Carbon nanofiber incorporated silica based aerogels with di-isocyanate cross-linking. Polym Preprints 49: 306–307

    CAS  Google Scholar 

  59. Meador M A B, Vivod S L, McCorkle L, Quade D, Sullivan R M, Ghosn L J, Clark N, Capadona L A (2008) Reinforcing polymer cross-linked aerogels with carbon nanofibers. J Mater Chem 18: 1843–1852

    Article  CAS  Google Scholar 

  60. Meador M A B, Weber A S, Hindi A, Naumenko M, McCorkle L, Quade D, Vivod S L, Gould G L, White S, Deshpande K (2009) Structure-property relationships in porous 3D nanostructures: epoxy-cross-linked silica aerogels produced using ethanol as the solvent. ACS Appl Mater Interfaces 1: 894–906

    Article  CAS  Google Scholar 

  61. Meador M A B, Fabrizio E F, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston J C, Leventis N (2005) Crosslinking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17: 1085–1098

    Article  CAS  Google Scholar 

  62. Ilhan U F, Fabrizio E F, McCorkle L, Scheiman D, Dass A, Palzer A, Meador M A B, Leventis N (2006) Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J Mater Chem 16: 3046–3054

    Article  CAS  Google Scholar 

  63. Wingfield C, Baski A, Betrino M F, Leventis N, Mohite D P, Lu H (2009) Fabrication of sol-gel materials with anisotropic physical properties by photo-cross-linking. Chem Mater 21: 2108–2114

    Article  CAS  Google Scholar 

  64. Nguyen B N, Meador M A B, Tousley M E, Shonkwiler B, McCorkle L, Scheiman D A, Palczer A (2009) Tailoring elastic properties of silica aerogels cross-linked with polystyrene. ACS Appl Mater Interfaces 1: 621–630

    Article  CAS  Google Scholar 

  65. Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R (1999) Silica sol as a nanoglue: flexible synthesis of composite aerogels. Science 284: 622–624

    Article  CAS  Google Scholar 

  66. Ziese W (1933) Die Reaktion von Äthylenoxyd mit Lösungen von Erd- und Schwermetallhalogeniden. Ein neur Weg zur Gewinnung von Solen und reversiblen Gelen von Metalloxydhydraten. Ber 66: 1965–1972

    Google Scholar 

  67. Gash A E, Tillotson T M, Satcher J H, Hrubesh L W, Simpson R L (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285: 22–28

    Article  CAS  Google Scholar 

  68. Sisk C N, Hope-Weeks J (2008) Copper(II) aerogels via 1,2-epoxide gelation. J Mater Chem 18: 2607–2610

    Article  CAS  Google Scholar 

  69. Leventis N, Vassilaras P, Fabrizio E F, Dass A (2007) Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J Mater Chem 17:1502–1508

    Article  CAS  Google Scholar 

  70. Leventis N, Sotiriou-Leventis C, Mulik S, Dass A, Schnobrich J, Hobbs A, Fabrizio E F, Juo H, Churu G, Zhang Y, Lu H (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at Cryogenic temperatures. J Mater Chem 18: 2475–2482

    Article  CAS  Google Scholar 

  71. Vollrath F, Knight D P (2001) Liquid crystalline spinning of spider silk. Nature 410: 541–548

    Article  CAS  Google Scholar 

  72. Wigley D A (1971) Mechanical properties of materials at low temperatures. Plenum Press, New York, NY pp 138–163

    Google Scholar 

  73. Amatani T, Nakanishi K, Hirao K, Kodaira T (2005) Monolithic periodic mesoporous silica with well defined macropores Chem Mater 17: 2114–2119

    CAS  Google Scholar 

  74. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B, Stucky G D (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores Science 279: 548–552

    Google Scholar 

  75. Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D (1998) Nonionic Triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures J Am Chem Soc 120: 6024–6036

    Google Scholar 

  76. Yang C M, Zibrowius B, Schmidt W, Schüth F (2004) Stepwise removal of the copolymer template from Mesopores and Micropores in SBA-15 Chem Mater 16: 2918–2925

    Google Scholar 

  77. Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S (1992) Ordered mesoporous molecular sieves synthesized by a liquid –crystal template mechanism. Nature 359: 710–712

    Article  CAS  Google Scholar 

  78. Schmidt-Winkel P, Lukens W W, Zhao J D, Yang P, Chmelka B F, Stucky G D (1999) Mesocellular siliceous foams with uniformly sized cells and windows. J Am Chem Soc 121: 254–255

    Article  CAS  Google Scholar 

  79. Leventis N, Mulik S, Wang X, Dass A, Sotiriou-Leventis C, Lu H (2007) Stresses at the interface of micro with nano. J Am Chem Soc 129: 10660–10661

    Article  CAS  Google Scholar 

  80. Leventis N, Mulik S, Wang X, Dass A, Patil V U, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non-Cryst Solids 354; 632–644

    Article  CAS  Google Scholar 

  81. American Society for Metals, ASM Engineering Materials Handbook, Composites, Volume 1: ASM International: Materials Park, OH, p 178, Table 2, 1998

    Google Scholar 

  82. Luo H, Chen W. (2004) Dynamic compressive response of intact and damaged AD995 alumina. Intern J Appl Ceram Techn 1: 254–260

    Article  CAS  Google Scholar 

  83. Luo H, Chen W, Rajendran A M (2006) Dynamic compressive response of damaged and interlocked SiC-N ceramics. J Am Ceram Soc 89: 266–273

    Article  CAS  Google Scholar 

  84. Mulik S, Sotiriou-Leventis C, Churu G, Lu Hongbing, Leventis N (2008) Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem Mater 20: 5035–5046

    Article  CAS  Google Scholar 

  85. Morgan P (2005) Carbon fibers and their composites. CRC Press (Taylor and Francis Group), New York, NY

    Google Scholar 

  86. Keller N, Reiff O, Keller V, Ledoux M J (2005) High surface area submicrometer-sized β-SiC particles grown by shape memory method. Diamond & Related Materials 14: 1353–1360

    Article  CAS  Google Scholar 

  87. Leventis N, Sadekar A, Chandrasekaran N, Sotiriou-Leventis C (2010) Click synthesis of monolithic silicon carbide aerogels from poly acrylonitrile-coated 3D silica networks. Chem Mater 22: 2790–2803

    Article  CAS  Google Scholar 

  88. Boday D J, DeFriend K A, Wilson K V Jr, Coder D, Loy D A (2008) Formation of polycyanoacrylate-silica nanocomposites by chemical vapor deposition of cyanoacrylates on aerogels. Chem Mater 20: 2845–2847

    Article  CAS  Google Scholar 

  89. Boday D J, Stover R J, Muriithi B, Keller M W, Wertz J T, DeFriend Obrey K A, Loy D A (2009) Strong, low density nanocomposites by chemical vapor deposition and polymerization of cyanoacrylates on aminated silica aerogels. ACS Appl Mater Interfaces 1: 1364–1369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been supported by the NASA Glenn Research Center Science Advisory Board, the University of Missouri Research Board, the US National Science Foundation under CMMI-0653919/0653970 and CHE-0809562, and the Army Research office under W911NF-10-1-0476. We also wish to thank our many collaborators at the Missouri University of Science and Technology, NASA GRC, Oklahoma State University, and the University of North Texas who have made crosslinked aerogels (X-Aerogels) possible: Antonella Alunni, Prof. Massimo Bertino, Dr. Lynn Capadona, Alex Capecelatro, Naveen Chandrasekaran, Chakkaravarthy Chidambareswarapattar, Gitogo Churu, Joe Counsil, Dr. Paul Curto, Amala Dass, Dr. Eve Fabrizio, Abigail Hobbs, Dr. U. Faysal Ilhan, Dr. J. Chris Johnston, Atul Kati, Dr. James Kinder, Dr. Huiyang Luo, Shruti Mahadik, Linda McCorkle, Dr. Mary Ann Meador, Dhairyashil Mohite, Dr. Sudhir Mulik, Anna Palczer, Vishal Patil, Prof. Abdel-Monem Rawashdeh, Prof. Samit Roy, Anand Sadekar, Dan Scheiman, Jennifer Schnobrich, Nilesh Shimpi, Prof. Chariklia Sotiriou-Leventis, Jeff Thomas, Plousia Vassilaras, Xiaojiang Wang, and Dr. Guohui Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Leventis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leventis, N., Lu, H. (2011). Polymer-Crosslinked Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics