Skip to main content

Energetics and Cancer: Exploring a Road Less Traveled

  • Chapter
  • First Online:
Physical Activity, Dietary Calorie Restriction, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 3))

Abstract

As the number of individuals who are overweight or obese continues to increase in a worldwide epidemic of positive energy imbalance, identification of the mechanisms that account for the effects of energetics on the development of cancer becomes increasingly important. In this brief review, attention is directed to the contributions of extracellular mediators and intracellular energy-sensing mechanisms to the regulation of the carcinogenic process. The signaling pathways regulated by intracellular energy sensors are integrally linked to pathways that communicate to the intracellular milieu, information about effects of the host’s energy status on the extracellular environment. Thus, the effects of energetics on cancer are likely to be accounted for by interactions among systemic factors, manifest in plasma concentrations of hormones, growth factors, and various cytokines including those arising from adipose and skeletal muscle tissues, and direct and indirect effects of energetic status on intracellular energy messengers and the proteins that detect changes in their concentrations. Collectively, the pathways regulated by energy status exert effects on cell survival/proliferation, cell death (apoptosis, autophagy, necrosis), tissue blood supply (vasculogenesis and angiogenesis), and resistance to metabolic stress, processes that are misregulated during the development of cancer.

This work was supported by United States Public Health Services Grant U54-CA116847 from the National Cancer Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IARC (2002) Weight control and physical activity, vol. 6. IARC Press, Lyon, pp 1–355. IARC Handbook of Cancer Prevention

    Google Scholar 

  2. Physical Activity Guidelines Advisory Committee (2008) Physical activity guidelines advisory committee report, 2008. US Department of Health and Human Services, Washington DC

    Google Scholar 

  3. Gunter MJ, Leitzmann MF (2006) Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J Nutr Biochem 17:145–156

    Article  CAS  PubMed  Google Scholar 

  4. Marshall S (2006) Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci STKE vol. 2006(346):re7, DOI: 10.1126/stke.3462006re7

    Google Scholar 

  5. Fenton JI, Birmingham JM, Hursting SD, Hord NG (2008) Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer 122:2437–2445

    Article  CAS  PubMed  Google Scholar 

  6. Hursting SD, Nunez NP, Varticovski L, Vinson C (2007) The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res 67:2391–2393

    Article  CAS  PubMed  Google Scholar 

  7. Hursting SD, Lashinger LM, Wheatley KW et al (2008) Reducing the weight of cancer: mechanistic targets for breaking the obesity-carcinogenesis link. Best Pract Res Clin Endocrinol Metab 22:659–669

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098

    Article  CAS  PubMed  Google Scholar 

  9. Freyssenet D (2007) Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102:529–540

    Article  CAS  PubMed  Google Scholar 

  10. Canto C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  CAS  PubMed  Google Scholar 

  11. Chaptini L, Peikin S (2008) Neuroendocrine regulation of food intake. Curr Opin Gastroenterol Mar;24(2):223–229

    Article  CAS  PubMed  Google Scholar 

  12. Castaneda TR, Jurgens H, Wiedmer P et al (2005) Obesity and the neuroendocrine control of energy homeostasis: the role of spontaneous locomotor activity. J Nutr 135:1314–1319

    CAS  PubMed  Google Scholar 

  13. Kojima M, Kangawa K (2005) Ghrelin: Structure and Function. Physiol Rev 85:495–522

    Article  CAS  PubMed  Google Scholar 

  14. Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049

    Article  CAS  PubMed  Google Scholar 

  15. Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  Google Scholar 

  16. Hardie DG (2004) The AMP-activated protein kinase pathway–new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  CAS  PubMed  Google Scholar 

  17. Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  CAS  PubMed  Google Scholar 

  18. Potter LR (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 10:1205–1220

    Article  CAS  PubMed  Google Scholar 

  19. Milner J (2009) Cellular regulation of SIRT1. Curr Pharm Des 15:39–44

    Article  CAS  PubMed  Google Scholar 

  20. Imai S (2009) The NAD World: a new systemic regulatory network for metabolism and aging–Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53:65–74

    Article  CAS  PubMed  Google Scholar 

  21. Kim EJ, Um SJ (2008) SIRT1: roles in aging and cancer. BMB Rep 41:751–756

    CAS  PubMed  Google Scholar 

  22. Dupont J, Froment P, Rame C, Pierre P, Coyral-Castel S, Chabrolle C (2008) Role of the fatty acids in ovarian functions: involvement of peroxisome proliferator-activated receptors (PPAR) and adipokines. Gynecol Obstet Fertil 36:1230–1238

    Article  CAS  PubMed  Google Scholar 

  23. Guri AJ, Hontecillas R, Bassaganya-Riera J (2006) Peroxisome proliferator-activated receptors: bridging metabolic syndrome with molecular nutrition. Clin Nutr 25:871–885

    Article  CAS  PubMed  Google Scholar 

  24. Bensinger SJ, Tontonoz P (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–477

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz-Stewart I, Tiyyagura SR, Lin JE et al (2004) Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci USA 101:37–42

    Article  CAS  PubMed  Google Scholar 

  26. Jebelovszki E, Kiraly C, Erdei N et al (2008) High-fat diet-induced obesity leads to increased NO sensitivity of rat coronary arterioles: role of soluble guanylate cyclase activation. Am J Physiol Heart Circ Physiol 294:H2558–H2564

    Article  CAS  PubMed  Google Scholar 

  27. Engeli S, Janke J, Gorzelniak K et al (2004) Regulation of the nitric oxide system in human adipose tissue. J Lipid Res 45:1640–1648

    Article  CAS  PubMed  Google Scholar 

  28. Jadeski LC, Chakraborty C, Lala PK (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer 106:496–504

    Article  CAS  PubMed  Google Scholar 

  29. Yang T, Fu M, Pestell R, Sauve AA (2006) SIRT1 and endocrine signaling. Trends Endocrinol Metab 17:186–191

    Article  CAS  PubMed  Google Scholar 

  30. Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    Article  CAS  PubMed  Google Scholar 

  31. Metoyer CF, Pruitt K (2008) The role of sirtuin proteins in obesity. Pathophysiology 15:103–108

    Article  CAS  PubMed  Google Scholar 

  32. Canto C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  Google Scholar 

  33. Medina-Gomez G, Gray S, Vidal-Puig A (2007) Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1. Public Health Nutr 10:1132–1137

    Article  PubMed  Google Scholar 

  34. Sertznig P, Seifert M, Tilgen W, Reichrath J (2007) Present concepts and future outlook: function of peroxisome proliferator-activated receptors (PPARs) for pathogenesis, progression, and therapy of cancer. J Cell Physiol 212:1–12

    Article  CAS  PubMed  Google Scholar 

  35. Zhu Z, Jiang W, Sells JL, Neil ES, McGinley JN, Thompson HJ (2008) Effect of nonmotorized wheel running on mammary carcinogenesis: circulating biomarkers, cellular processes, and molecular mechanisms in rats. Cancer Epidemiol Biomarkers Prev 17:1920–1929

    Article  CAS  PubMed  Google Scholar 

  36. LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    CAS  PubMed  Google Scholar 

  37. Zhu Z, Jiang W, McGinley JN, Thompson HJ (2009) Energetics and mammary carcinogenesis: effects of moderate-intensity running and energy intake on cellular processes and molecular mechanisms in rats. J Appl Physiol 106:911–918

    Article  PubMed  Google Scholar 

  38. Jiang W, Zhu Z, Thompson HJ (2009) Effects of physical activity and restricted energy intake on chemically induced mammary carcinogenesis. Cancer Prev Res (Phila PA) 2:338–344

    CAS  Google Scholar 

  39. Zhu Z, Jiang W, McGinley J, Wolfe P, Thompson HJ (2005) Effects of dietary energy repletion and IGF-1 infusion on the inhibition of mammary carcinogenesis by dietary energy restriction. Mol Carcinog 42:170–176

    Article  CAS  PubMed  Google Scholar 

  40. Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC (2003) Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med 54:131–152

    Article  CAS  PubMed  Google Scholar 

  41. Younes H, Leleu X, Hatjiharissi E et al (2007) Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res 13:3771–3775

    Article  CAS  PubMed  Google Scholar 

  42. Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation–AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574:63–71

    Article  CAS  PubMed  Google Scholar 

  43. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734

    Article  CAS  PubMed  Google Scholar 

  44. Lee CC, Huang CC, Wu MY, Hsu KS (2005) Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway. J Biol Chem 280:18543–18550

    Article  CAS  PubMed  Google Scholar 

  45. Martin KA, Rzucidlo EM, Merenick BL et al (2004) The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. Am J Physiol Cell Physiol 286:C507–C517

    Article  CAS  PubMed  Google Scholar 

  46. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  CAS  PubMed  Google Scholar 

  47. Martin KA, Blenis J (2002) Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 86:1–39

    Article  CAS  PubMed  Google Scholar 

  48. Sonenberg N, Gingras AC (1998) The mRNA 5’ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10:268–275

    Article  CAS  PubMed  Google Scholar 

  49. Jiang W, Zhu Z, Thompson HJ (2008) Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res 68:5492–5499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mary Playdon and John N. McGinley for their technical assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thompson, H.J., Jiang, W., Zhu, Z. (2011). Energetics and Cancer: Exploring a Road Less Traveled. In: McTiernan, A. (eds) Physical Activity, Dietary Calorie Restriction, and Cancer. Energy Balance and Cancer, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7551-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7551-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7550-8

  • Online ISBN: 978-1-4419-7551-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics