Skip to main content

Plant Water Relations, Plant Stress and Plant Production

  • Chapter
  • First Online:
Plant Breeding for Water-Limited Environments

Summary

Plant water deficit is initiated as the crop demand for water exceeds the supply. The capacity of plants to meet the demand and thus avoid water deficit depends on their “hydraulic machinery.” This machinery involves firstly the reduction of net radiation by canopy albedo, thus reflecting part of the energy load on the plant. Secondly, it determines the ability to transport sufficient amount of water from the soil to the atmosphere via the stomata (which take in CO2) in order to provide for transpiration, transpirational cooling and carbon assimilation. Water is transported by way the SPAC (soil-plant-atmosphere continuum). SPAC is largely controlled by the resistances in the continuum as determined by root, stem, leaf, stomata and cuticular hydraulic resistances. Resistances are generally a function of the plant basic anatomy, development and metabolism. Some resistance such as those of stomata is also variable depending on plant responses and environment effects.

The primary force driving water against plant resistances is the soil-to leaf gradient of water potential which is expressed in reduced leaf water potential. Reduced leaf water potential may induce osmotic adjustment which helps maintain leaf hydration at low leaf water potential. As plants enter a state of water deficit, hormones, mainly ABA are produced in the root and the shoot, causing an array of responses, most of which cannot be defined as productive in the agronomic sense. Thus, the combination of hydraulic stress and hormonal metabolism carry various impacts on plant adaptation to stress on one hand and reductions in growth and productivity on the other. The most susceptible growth stage to water deficit is flowering and reproduction, which in many crop species cannot be recovered upon rehydration. Some (not all) of the heritable plant traits and adaptive responses to water deficit can be counterproductive in term of allowing high yield potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi A, Baker DA (2001) The effect of water stress on grain filling processes in wheat. J Agric Sci 136:257–269

    Article  Google Scholar 

  • Alexandersson E, Danielson JÅH, Råde J et al (2010) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant J 61:650–660

    Article  CAS  PubMed  Google Scholar 

  • Aneja M, Gianfagna T, Ng E (2004) The roles of abscisic acid and ethylene in the abscission and senescence of cocoa flowers. J Plant Growth Regul 27:149–155

    Google Scholar 

  • Araus JL, Febrero A, Vendrell P (1991) Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions – the role of epicuticular waxes and stomata. Plant Cell Environ 14:545–558

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP et al (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed  Google Scholar 

  • Asseng S, Ritchie JT, Smucker AJM et al (1998) Root growth and water uptake during water deficit and recovering in wheat. Plant Soil 201:265–273

    Article  CAS  Google Scholar 

  • Auge RM, Kubikova E, Moore JL (2001) Foliar dehydration tolerance of mycorrhizal cowpea, soybean and bush bean. New Phytol 151:535–541

    Article  Google Scholar 

  • Austin RB, Bingham J, Blackwell RD et al (1980) Genetic improvement in winter wheat yields since 1900 and associated physiological changes. J Agric Sci 94:675–689

    Article  Google Scholar 

  • Barker DJ, Sullivan CY, Moser LE (1993) Water deficit effects on osmotic potential, cell wall elasticity, and proline in five forage grasses. Agron J 85:270–275

    Article  CAS  Google Scholar 

  • Bauerle TL, Richards JH, Smart DR et al (2008) Importance of internal hydraulic redistribution for prolonging the lifespan of roots in dry soil. Plant Cell Environ 31:177–186

    CAS  PubMed  Google Scholar 

  • Beis A, Patakas A (2010) Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought. Funct Plant Biol 37:139–146

    Article  Google Scholar 

  • Blum A (1970) Nature of heterosis in grain production by the sorghum panicle. Crop Sci 10:28–31

    Article  Google Scholar 

  • Blum A (1975) Effect of the BM gene on epicuticular wax deposition and the spectral characteristics of sorghum leaves. SABRAO J 7:45–52

    Google Scholar 

  • Blum A (1977) The basis of heterosis in the differentiating sorghum panicle. Crop Sci 17:880–882

    Article  Google Scholar 

  • Blum A (2004) Sorghum physiology. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Blum A, Arkin GF (1984) Sorghum root growth and water-use as affected by water supply and growth duration. Field Crops Res 9:131–142

    Article  Google Scholar 

  • Blum A, Ritchie JT (1984) Effect of soil surface water content on sorghum root distribution in the soil. Field Crops Res 8:169–176

    Article  Google Scholar 

  • Blum A, Sinmena B (1995) Isolation and characterization of variant wheat cultivars for ABA sensitivity. Plant Cell Environ 18:77–83

    Article  Google Scholar 

  • Blum A, Mayer J, Golan G (1988) The effect of grain number (sink size) on source activity and its water-relations in wheat. J Exp Bot 39:106–114

    Article  Google Scholar 

  • Blum A, Munns R, Passioura JB et al (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110:1051

    CAS  PubMed  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Borras L, Westgate M, Otegui ME (2003) Control of grain weight and grain water relations by post-flowering source-sink ratio in maize. Ann Bot 91:857–867

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS, Westgate ME (2004) Grain yields with limited water. J Exp Bot 55:2385–2394

    Article  CAS  PubMed  Google Scholar 

  • Bramley H, Turner DW, Tyerman SD et al (2007) Water flow in the roots of crop species: the influence of root structure, aquaporin activity, and waterlogging. Adv Agron 96:33–196

    Google Scholar 

  • Brodrib TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Burow GB, Franks CD, Xin Z (2008) Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum. Crop Sci 48:41–48

    Article  Google Scholar 

  • Caird MA, Richards JH, Hsiao TC (2007) Significant transpirational water loss occurs throughout the night in field-grown tomato. Funct Plant Biol 34:172–177

    Article  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    Article  CAS  PubMed  Google Scholar 

  • Chazen O, Neumann PM (1994) Hydraulic signals from the roots and rapid cell-wall hardening in growing maize (Zea mays l) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol 104:1385–1392

    CAS  PubMed  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress – role of cytokinin abscisic acid balance. Plant Physiol 106:45–51

    CAS  PubMed  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L) in both early growth and flowering phases. Field Crops Res 95:305–315

    Article  Google Scholar 

  • Christmann A, Grill E (2009) Are GTGs ABA’s biggest fans? Cell 136:21–23

    Article  CAS  PubMed  Google Scholar 

  • Christmann A, Weiler EW, Steudle E et al (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Casella E, Mencuccini M (2007) Xylem vulnerability to cavitation varies among poplar and willow clones and correlates with yield. Tree Physiol 27:1761–1767

    PubMed  Google Scholar 

  • Cochard H, Holtta T, Herbette S et al (2009) New insights into the mechanisms of water-stress-induced cavitation in conifers. Plant Physiol 151:949–954

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansions. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Cutler JM, Rains DW, Loomis RS (1977) The importance of cell size in the water relations of plants. Physiol Plant 40:255–260

    Article  Google Scholar 

  • Davies FT, Olalde-Portugal V, Aguilera-Gomez L et al (2002a) Alleviation of drought stress of Chile ancho pepper (Capsicum annuum L cv San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hort 92:347–359

    Article  Google Scholar 

  • Davies WJ, Wilkinson S, Loveys B (2002b) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    Article  CAS  Google Scholar 

  • Davies WJ, Kudoyarova G, Hartung W (2005) Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul 24:285–295

    Article  CAS  Google Scholar 

  • de Wit CT (1958) Transpiration and crop yields. Versl Landabouwk Onderz 64:1–88

    Google Scholar 

  • Dodd IC (2009) Rhizosphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J Exp Bot 60:2454–2459

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Neumann PM (2004) The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiol 135: 2291–2300

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Linker R, Gepstein S et al (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    Article  CAS  PubMed  Google Scholar 

  • Fang X, Turner NC, Yan G et al (2010) Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L) under terminal drought. J Exp Bot 61:335–345

    Article  CAS  PubMed  Google Scholar 

  • Fletcher AL, Sinclair TR, Allen LH Jr (2007) Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ Exp Bot 61:145–151

    Article  CAS  Google Scholar 

  • Frascaroli E, Tuberosa R (1993) Effect of abscisic acid on pollen germination and tube growth of maize genotypes. Plant Breed 110:250–254

    Article  CAS  Google Scholar 

  • Fulai L, Christian RJ, Mathias NA (2004) Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res 86:1–13

    Article  Google Scholar 

  • Galmés J, Pou A, Alsina MM et al (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp): relationship with ecophysiological status. Planta 226:671–681

    Article  PubMed  CAS  Google Scholar 

  • Garrity DP, Vidal ET, O’Toole JC (1986) Manipulating panicle transpiration resistance to increase spikelet fertility during flowering stage water stress. Crop Sci 26:789–795

    Article  Google Scholar 

  • Granier C, Tardieu F (1999) Water deficit and spatial pattern of leaf development Variability in responses can be simulated using a simple model of leaf development. Plant Physiol 119:609–620

    Article  CAS  PubMed  Google Scholar 

  • Gutschick VP, Simonneau T (2002) Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid-based model of stomatal response to soil drying. Plant Cell Environ 25:1423–1434

    Article  Google Scholar 

  • Harrison MA, Kaufman PB (1980) Hormonal regulation of lateral bud (tiller) release in oats (Avena sativa L). Plant Physiol 66:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Havlová M, Dobrev PI, Motyka V et al (2008) The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ 31:341–353

    Article  PubMed  CAS  Google Scholar 

  • Henson IE, Mahalakshmi V (1985) Evidence for panicle control of stomatal behaviour in water-stressed plants of pearl millet. Field Crops Res 11:281–290

    Article  Google Scholar 

  • Holmes MG, Keiller DR (2002) Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant Cell Environ 25:85–93

    Article  CAS  Google Scholar 

  • Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580

    Article  CAS  PubMed  Google Scholar 

  • Hose E, Steudle E, Hartung W (2000) Abscisic acid and hydraulic conductivity of maize roots: a study using cell- and root-pressure probes. Planta 211:874–882

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR et al (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  Google Scholar 

  • Jacqmard A, Houssa C, Bernier G (1995) Abscisic acid antagonizes the effect of cytokinin on DNA-replication origins. J Exp Bot 46:663–666

    Article  CAS  Google Scholar 

  • Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313

    Article  CAS  PubMed  Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69

    Article  CAS  Google Scholar 

  • Ji X, Shiran B, Wan J et al (2010) Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ 33:926–942

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Flexas J et al (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  CAS  PubMed  Google Scholar 

  • Khanna-Chopra R, Sinha SK (1988) Enhancement of drought-induced senescence by the reproductive sink in fertile lines of wheat and sorghum. Ann Bot 61:649–653

    Google Scholar 

  • Kholova J, Hash CT, Lava Kumar P et al (2010) Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. J Exp Bot 61:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Koch K (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  CAS  PubMed  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A et al (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    Article  CAS  PubMed  Google Scholar 

  • Landi P, Sanguineti MC, Conti S et al (2001) Direct and correlated responses to divergent selection for leaf abscisic acid concentration in two maize populations. Crop Sci 41:335–344

    Article  CAS  Google Scholar 

  • Landi P, Sanguineti MC, Liu C et al (2007) Root-ABA1 QTL affects root lodging, grain yield, and other agronomic traits in maize grown under well-watered and water-stressed conditions. J Exp Bot 58:319–326

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Benkova E, Casimiro I et al (2008) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900

    Article  CAS  Google Scholar 

  • Le Bris M, Michaux-Ferrière N, Jacob Y et al (1999) Regulation of bud dormancy by manipulation of ABA in isolated buds of Rosa hybrida cultured in vitro. Aust J Plant Physiol 26:273–281

    Article  CAS  Google Scholar 

  • Li Y, Wang G-X, Xin M et al (2004) The parameters of guard cell calcium oscillation encodes stomatal oscillation and closure in Vicia faba. Plant Sci 166:415–421

    Article  CAS  Google Scholar 

  • Li Y, Sperry JS, Shao M (2009) Hydraulic conductance and vulnerability to cavitation in corn (Zea mays L) hybrids of differing drought resistance. Environ Exp Bot 66:341–346

    Article  Google Scholar 

  • Liu F, Andersen MN, Jensen CR (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct Plant Biol 30:271–280

    Article  CAS  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2005) A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust J Agr Res 56:1245–1252

    Article  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–276

    Article  CAS  PubMed  Google Scholar 

  • Lopez G, Behboudian MH, Vallverdu X et al (2010) Mitigation of severe water stress by fruit thinning in ‘O’Henry’ peach: implications for fruit quality. Sci Hort 125:294–300

    Article  Google Scholar 

  • Lu ZJ, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952

    Article  CAS  Google Scholar 

  • Luan S (2002) Signalling drought in guard cells. Plant Cell Environ 25:229–237

    Article  CAS  PubMed  Google Scholar 

  • Mambelli S, Setter TL (1998) Inhibition of maize endosperm cell division and endoreduplication by exogenously applied abscisic acid. Physiol Plant 104:266–272

    Article  CAS  Google Scholar 

  • Marshall JG, Dumbroff EB (1999) Turgor regulation via cell wall adjustment in white spruce. Plant Physiol 119:313–320

    Article  CAS  PubMed  Google Scholar 

  • McMichael BL, Lascano RJ (2010) Evaluation of hydraulic lift in cotton (Gossypium hirsutum L) germplasm. Environ Exp Bot 68:26–30

    Article  Google Scholar 

  • Mills D, Genfa Z, Benzioni A (2001) Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. J Plant Physiol 158:1031–1039

    Article  CAS  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T et al (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa S-I, Yoshimura S, Shinzaki Y et al (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:553–564

    Article  CAS  Google Scholar 

  • Moore JP, Nguema-Ona E, Chevalier L et al (2006) Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. Plant Physiol 141:651–662

    Article  CAS  PubMed  Google Scholar 

  • Morgan JM (1980) Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature 285:655–657

    Article  CAS  Google Scholar 

  • Morgan JM (1992) Osmotic components and properties associated with genotypic differences in osmoregulation in wheat. Aust J Plant Physiol 19:67–76

    Article  Google Scholar 

  • Munne-Bosch S, Alegre L (2004) Die and let live: leaf senescence contributes to plant survival under drought stress. Funct Plant Biol 31:203–216

    Article  CAS  Google Scholar 

  • Munns R, Richards RA (2007) Recent advances in breeding wheat for drought and salt stresses. In: Jenks MA, Hasegawa PM, Mohan Jain S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Munns R, Sharp RE (1993) Involvement of abscisic acid in controlling plant growth in soils of low water potential. Aust J Plant Physiol 20:425–437

    Article  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  Google Scholar 

  • Nar H, Saglam A, Terzi R et al (2009) Leaf rolling and photosystem II. Efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica 47:429–436

    Article  CAS  Google Scholar 

  • Neumann PM (1995) The role of cell wall adjustment in plant resistance to water deficits. Crop Sci 35:1258–1266

    Article  Google Scholar 

  • Ober ES, Sharp RE (2007) Regulation of root growth responses to water deficit. In: Jenks MA, Hasegawa PM, Jain S (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Dordrecht

    Google Scholar 

  • Ofir M, Kigel J (1998) Abscisic acid involvement in the induction of summer-dormancy in Poa bulbosa, a grass geophytes. Physiol Plant 102:163–170

    Article  CAS  Google Scholar 

  • Ohkuma K, Lyon JL, Addicott FT et al (1963) Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142:1592–1593

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Or E, Belausov E, Popilevsky I et al (2000) Changes in endogenous ABA level in relation to the dormancy cycle in grapevines grown in a hot climate. J Hort Sci Biotechnol 75:190–194

    CAS  Google Scholar 

  • Ortega U, Duñabeitia M, Menendez S et al (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24:65–73

    CAS  PubMed  Google Scholar 

  • O’Toole JC (1982) Adaptation of rice to drought prone environments. In: Drought resistance in crops with emphasis on rice. International Rice Research Institute, Los Banos

    Google Scholar 

  • Palta JA, Turner NC, French RJ et al (2007) Physiological responses of lupin genotypes to terminal drought in a Mediterranean-type environment. Ann Appl Biol 150:269–279

    Article  Google Scholar 

  • Parent B, Hachez C, Redondo et al (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012

    Article  CAS  PubMed  Google Scholar 

  • Passioura JB, Fry SC (1992) Turgor and cell expansion: beyond the Lockhart equation. Aust J Plant Phys 19:565–576

    Article  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA (1991) Implications of genetic differences in ABA accumulation for crop production. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios Scientific Publishers, London

    Google Scholar 

  • Quintero JM, Fournier JM, Benlloch M (1999) Water transport in sunflower root systems: effects of ABA, Ca2+ status and HgCl2. J Exp Bot 50:1607–1612

    Article  CAS  Google Scholar 

  • Rasmussen RD, Hole D, Hess JR et al (1997) Wheat kernel dormancy and plus abscisic acid level following exposure to fluridone. J Plant Physiol 150:440–445

    CAS  Google Scholar 

  • Reymond M, Muller B, Leonardi A et al (2003) Combining quantitative trait loci analysis and an ecophysiological model to analyze the genetic variability of the responses of maize leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  CAS  PubMed  Google Scholar 

  • Reynolds MP, Balota M, Delgado MIB et al (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Article  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Rose TJ, Rengel Z, Ma Q et al (2008) Hydraulic lift by canola plants aids P and K uptake from dry topsoil. Aust J Agric Res 59:38–45

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM et al (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Vinocur BJ, Diber A et al (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  • Sanguineti MC, Conti S, Landi P et al (1996) Abscisic acid concentration in maize leaves – genetic control and response to divergent selection in two populations. Maydica 41:193–203

    Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Schussler JR, Westgate ME (1995) Assimilate flux determines kernel set at low water potential in maize. Crop Sci 35:1074–1080

    Article  Google Scholar 

  • Serpe MD, Matthews MA (2000) Turgor and cell wall yielding in dicot leaf growth in response to changes in relative humidity. Aust J Plant Physiol 27:1131–1140

    Google Scholar 

  • Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant Cell Environ 25:211–222

    Article  CAS  PubMed  Google Scholar 

  • Sharp RG, Davies WJ (2009) Variability among species in the apoplastic pH signalling response to drying soils. J Exp Bot 60:4363–4370

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, LeNoble ME (2001) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53:33–37

    Article  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG et al (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Shaterian J, Georges F, Hussain A et al (2005) Root to shoot communication and abscisic acid in calreticulin (CR) gene expression and salt-stress tolerance in grafted diploid potato clones. Environ Exp Bot 53:323–332

    Article  CAS  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK et al (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  • Shepherd T, Wynne GD (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    Article  CAS  PubMed  Google Scholar 

  • Sherson SM, Alford HL, Forbes SM et al (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S (1998) Sugar regulation of gene expression in plants. Curr Opin Plant Biol 1:230–234

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Oren R et al (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  • Sperry JS, Stiller V, Hacke UG (2003) Xylem hydraulics and the soil plant-atmosphere continuum: opportunities and unresolved issues. Agron J 95:1362–1370

    Article  Google Scholar 

  • Steinbach HS, Benech-Arnold RL, Sanchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113:149–154

    CAS  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  • Stirzaker RJ, Passioura JB (1996) The water relations of the root-soil interface. Plant Cell Environ 19:201–208

    Article  Google Scholar 

  • Stratton L, Goldstein G, Meinzer FC (2000) Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant Cell Environ 23:99–106

    Article  Google Scholar 

  • Tardieu F, Granier C (2000) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol Biol 43:555–567

    Article  CAS  PubMed  Google Scholar 

  • Thompson AJ, Andrews J, Mulholland BJ et al (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143:1905–1917

    Article  CAS  PubMed  Google Scholar 

  • Troughton A (1980) Production of root axes and leaf elongation in perennial ryegrass in relation to dryness of the upper soil layer. J Agric Sci Camb 95:533–538

    Article  Google Scholar 

  • Tsuchihira A, Hanba YT, Kato N (2010) Effect of overexpression of radish plasma membrane aquaporins on water-use efficiency, photosynthesis and growth of Eucalyptus trees. Tree Physiol 30:417–430

    Article  CAS  PubMed  Google Scholar 

  • Vandeleur RK, Mayo G, Shelden MC et al (2009) The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiol 149:445–460

    Article  CAS  PubMed  Google Scholar 

  • Wall GW, Garcia RL, Kimball BA et al (2006) interactive effects of elevated carbon dioxide and drought on wheat. Agron J 98:354–381

    Article  Google Scholar 

  • Wan CG, Xu WW, Sosebee RE et al (2000) Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant Soil 219:117–126

    Article  CAS  Google Scholar 

  • Wang Z, Cao W, Dai T et al (2001) Effects of exogenous hormones on floret development and grain set in wheat. Plant Growth Regul 35:225–231

    Article  CAS  Google Scholar 

  • Welcker C, Boussuge B, Bencivenni C et al (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58:339–349

    Article  CAS  PubMed  Google Scholar 

  • Westgate ME, Passioura JB, Munns R (1996) Water status and aba content of floral organs in drought-stressed wheat. Aust J Plant Physiol 23:763–772

    Article  CAS  Google Scholar 

  • Whalley WR, Clark LJ, Gowing DJG et al (2006) Does soil strength play a role in wheat yield losses caused by soil drying? Plant Soil 280:279–290

    Article  CAS  Google Scholar 

  • White RG, Kirkegaard JA (2010) The distribution and abundance of wheat roots in a dense, structured subsoil – implications for water uptake. Plant Cell Environ 33:133–148

    Article  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Spollen WG, Sharp RE et al (1994) Root growth maintenance at low water potentials – increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid. Plant Physiol 106:607–615

    Article  CAS  PubMed  Google Scholar 

  • Wu YJ, Sharp RE, Durachko DM et al (1996) Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol 111, 765–772

    CAS  PubMed  Google Scholar 

  • Xiong Y-C, Li F-M, Zhang T et al (2007) Evolution mechanism of non-hydraulic root-to-shoot signal during the anti-drought genetic breeding of spring wheat. Environ Exp Bot 59:193–205

    Article  Google Scholar 

  • Xu XD, Bland WL (1993) Reverse water flow in sorghum roots. Agron J 85:384–388

    Article  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ et al (2001) Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J Exp Bot 52:2169–2179

    CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ et al (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631

    Article  CAS  Google Scholar 

  • Yang JC, Zhang JH, Ye YX et al (2004) Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ 27:1055–1064

    Article  CAS  Google Scholar 

  • Yang JC, Zhang J, Liu K et al (2006) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171:293–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang J-Y, Broeckling CD, Blancaflor EB et al (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jia W, Yang J et al (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 96:111–119

    Article  Google Scholar 

  • Zhu J, Brownjonathan KM, Lynch P (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749

    PubMed  Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH et al (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575–615

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blum, A. (2011). Plant Water Relations, Plant Stress and Plant Production. In: Plant Breeding for Water-Limited Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7491-4_2

Download citation

Publish with us

Policies and ethics