Skip to main content

State of the Art in Immobilized/Encapsulated Cell Technology in Fermentation Processes

  • Conference paper
  • First Online:
Food Engineering Interfaces

Part of the book series: Food Engineering Series ((FSES))

Abstract

Immobilized yeast cells are being used in various bio-industries but also could be beneficially implemented in industries based on ethanol fermentation. For reasons including faster fermentation rates in comparison to traditional processes, increased volumetric productivity, and the possibility of continuous operation, immobilized yeast technology has attracted increasing attention in these industries over the last 30 years. Nowadays, immobilized yeast technology is well established in a number of processes, such as sparkling wine production, secondary beer fermentation, and alcohol-free and low-alcohol beer production. However, some processes like wine fermentation, cider fermentation, and primary beer fermentation are still under scrutiny in the lab or at pilot-scale levels. These processes are significantly more complex and have various side reactions that are important in flavor formation and final product quality. At the moment, the major challenge facing the successful application of immobilized cell technology (ICT) on an industrial scale is yeast physiology control and fine-tuning of flavor formation during fermentation processes. In this review, the process requirements, carrier materials, and bioreactor design for fermentation with immobilized cells are discussed. In addition, the influence of ICT on the formation of flavor-active compounds (i.e., higher alcohols, esters, and vicinal diketones) is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agouridis N, Bekatorou A, Nigam P, Kanellaki M (2005) Malolactic fermentation in wine with Lactobacillus casei cells immobilized on delignified cellulosic material. J Agric Food Chem 53(7):2546–2551

    Article  CAS  Google Scholar 

  • Aivasidis A (1996) Another look at immobilized yeast systems. Cerevisia 21(1):27–32

    CAS  Google Scholar 

  • Aivasidis A, Wandrey C, Eils HG, Katzke M (1991). Continuous fermentation of alcohol-free beer with immobilized yeast cells in fluidized bed reactors. Proc. 23rd EBC Cong., pp 569–576

    Google Scholar 

  • Andersen K, Bergin J, Ranta B, Viljava T (1999). New process for the continuous fermentation of beer. Proc. 27th Eur. Brew. Conv. Cong. EBC, pp 771–778

    Google Scholar 

  • Andries M, Van Beveren PC, Goffin O, Masschelein CA (1996) Design and application of an immobilized loop bioreactor for continuous beer fermentation. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier, Amsterdam, pp 672–678

    Google Scholar 

  • Back W, Krottenthaler M, Braun T (1998) Investigations into continuous beer maturation. Brauwelt International 3:222–226

    Google Scholar 

  • Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas AA (1992) Low temperature wine making by immobilized cells on mineral kissiris. J Agric Food Chem 40:1293–1296

    Article  CAS  Google Scholar 

  • Bakoyianis V, Koutinas AA, Agelopoulos K, Kanellaki M (1997) Comparative study of kissiris, γ-alumina, and calcium alginate as supports of cells for batch and continuous wine-making at low temperatures. J Agric Food Chem 45:4884–4888

    Article  CAS  Google Scholar 

  • Bardi EP, Bakoyianis V, Koutinas AA, Kanellaki M (1996) Room temperature and low temperature wine making using yeast immobilized on gluten pellets. Process Biochem 31:425–430

    Article  CAS  Google Scholar 

  • Bardi EP, Koutinas AA (1994) Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J Agric Food Chem 42:221–226

    Article  CAS  Google Scholar 

  • Bardi E, Koutinas AA, Kanellaki M (1997) Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochem 32:691–696

    Article  CAS  Google Scholar 

  • Baron GV, Willaert RG (2004) Cell immobilisation in pre-formed porous matrices. In: Nedovic V, Willaert R (eds) Fundamentals of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 229–244

    Google Scholar 

  • Bekers M, Ventina E, Karsakevich A, Vina A, Rapoport A, Upite D, Kaminska E, Linda R (1999) Attachment of yeast to modified stainless steel wire spheres, growth of cells and ethanol production. Process Biochem 35:523–530

    Article  Google Scholar 

  • Bezbradica D, Obradovic B, Leskosek-Cukalovic I, Bugarski B, Nedovic V (2007) Immobilization of yeast cells in PVA particles for beer fermentation. Process Biochem 42(9):1348–1351

    Article  CAS  Google Scholar 

  • Brányik T, Silva DP, Vicente AA, Lehnert R, Almeida e Silva JB, Dostálek P, Teixeira JA (2006a) Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J Ind Microbiol Biotechnol 33:1010–1018

    Article  CAS  Google Scholar 

  • Brányik T, Vicente AA, Cruz JMM, Teixeira JA (2002) Continuous primary beer fermentation with brewing yeast immobilized on spent grains. J Inst Brew 108:410–415

    Article  Google Scholar 

  • Brányik T, Vicente AA, Cruz JMM, Teixeira JA (2004) Continuous primary fermentation of beer with yeast immobilized on spent grains – the effect of operational conditions. J Am Soc Brew Chem 62:29–34

    Google Scholar 

  • Cabranes C, Moreno J, Mangas JJ (1998) Cider production with immobilized Leuconostoc oenos. J Inst Brew 104:127–130

    Article  CAS  Google Scholar 

  • Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H, Klis FM (1997) In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489

    Article  CAS  Google Scholar 

  • Collin S, Montesinos M, Meersman E, Swinkels W, Dufour JP (1991) Yeast dehydrogenase activities in relation to carbonyl compounds removal from wort and beer. Proc. Eur. Brew. Conv. Cong., pp 409–416

    Google Scholar 

  • Cop J, Dyon D, Iserentant D, Masschelein CA (1989). Reactor design optimization with a view to the improvement of amino acid utilization and flavor development of calcium alginate entrapped brewing yeast fermentations. Proc. 22nd EBC Cong., pp 315–322

    Google Scholar 

  • Coutts MW (1957) A continuous process for the production of beer. UK Patent 872,391400

    Google Scholar 

  • Cross PA, Mavituna F (1987) Yeast retention fermentors for beer production. Proc. 4th Eur. Cong. Biotechnol. Amsterdam, pp 199–200

    Google Scholar 

  • Decamps C, Norton S, Poncelet D, Neufeld RJ (2004) Continuous pilot plant-scale immobilization of yeast in κ-carrageenan gel beads. AlChE J 50:1599–1605

    Article  CAS  Google Scholar 

  • Dillenhofer W, Ronn D (1996) Secondary fermentation of beer with immobilized yeast. Brauwelt International 14:344–346

    Google Scholar 

  • Divies C, Cachon R (2005) Wine production by immobilized cell systems. In: Willaert R, Nedovic V (eds) Applications of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 285–293

    Chapter  Google Scholar 

  • Durieux A, Bodo E, Nedovic V, Simon JP (2002) Effect of yeast and Oenococcus oeni immobilisation on the formation of flavour components for cider production. Proc. International workshop bioencapsulation X: cell physiology and interactions of biomaterials and matrices. Prague, Czech Republic, pp 54–57

    Google Scholar 

  • Durieux A, Nikolay X, Simon JP (2000) Continuous malolactic fermentation by Oeconoccocus oeni entrapped in Lentikats. Biotechnol Lett 22:1679–1684

    Article  CAS  Google Scholar 

  • Durieux A, Nicolay X, Simon J-P (2005) Application of immobilisation technology to cider production: a review. In: Willaert R, Nedovic V (eds) Applications of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 275–284

    Chapter  Google Scholar 

  • Ehrlich F (1904) Uber das natürliche isomere des leucins. Berichte der Deutschen Chemisten Gesellschaft 37:1809–1840

    Article  CAS  Google Scholar 

  • Ferraro L, Fatichenti F, Ciani M (2000) Pilot scale vinification process using immobilized Candida stellata cells and Saccharomyces cerevisiae. Process Biochem 35:1125–1129

    Article  CAS  Google Scholar 

  • Fujii T, Kobayashi O, Yoshimoto H, Furukawa S, Tamai Y (1997) Effect of aeration and unsaturated fatty acids on expression of Saccharomyces cerevisiae alcohol acetyltransferase gene. Appl Environ Microbiol 63:910–915

    CAS  Google Scholar 

  • Fujiwara D, Yoshimoto H, Sone H, Harashima S, Tamai Y (1998) Transcriptional co-regulation of Saccharomyces cerevisiae alcohol acetyltransferase gene ATF1 and D-9 fatty acid desaturase gene, OLE1 by unsaturated fatty acids. Yeast 14:711–721

    Article  CAS  Google Scholar 

  • Fumi MD, Trioli G, Colagrande O (1987) Immobilization of Saccharomyces cerevisiae in calcium alginate for sparkling wine processes. Biotechnol Lett 9:339–342

    Article  CAS  Google Scholar 

  • Fumi MD, Trioli G, Colombi MG, Colagrande O (1988) Immobilization of Saccharomyces cerevisiae in calcium alginate gel and its application to bottle-fermented sparkling wine production. Am J Enol Viticult 39:267–272

    CAS  Google Scholar 

  • Ge XM, Zhang L, Bai FW (2006) Impacts of yeast floc size distributions on their observed rates for substrate uptake and product formation. Enzyme Microb Technol 39:289–295

    Article  CAS  Google Scholar 

  • Gryta M (2002) The assessment of microorganism growth in the membrane distillation system. Desalination 142:79–88

    Article  CAS  Google Scholar 

  • Hammond JRM (1995) Genetically-modified brewing yeast for the 21st century. Progress to date. Yeast 11:1613–1627

    Article  CAS  Google Scholar 

  • Hanneman W (2002) Reducing beer maturation time and retaining quality. Mast Brew Assoc Am Techn Quart 39(3):149–155

    Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266

    Article  CAS  Google Scholar 

  • Herrero M, Laca A, Garcia LA, Díaz M (2001) Controlled malolactic fermentation in cider using Oenococcus oeni immobilized in alginate beads and comparison with free cell fermentation. Enzyme Microb Technol 28:35–41

    Article  CAS  Google Scholar 

  • Huang J, Hooijmans CM, Briasco CA, Geraats SGM, Luyben KCAM, Thomas D, Barbotin JN (1990) Effect of free-cell growth parameters on oxygen concentration profiles in gel-immobilized recombinant Escherichia coli. Appl Microbiol Biotechnol 33:619–623

    Article  CAS  Google Scholar 

  • Iconomopoulou M, Kanellaki M, Soupioni M, Koutinas AA (2003) Effect of freeze-dried cells on delignified cellulosic material in low-temperature wine making. Appl Biochem Biotechnol 104:23–36

    Article  Google Scholar 

  • Iconomopoulou M, Psarianos K, Kanellaki M, Koutinas AA (2002) Low temperature and ambient temperature wine making using freeze-dried immobilized cells on gluten pellets. Process Biochem 37:707–717

    Article  CAS  Google Scholar 

  • Iconomou L, Kanellaki M, Voliotis S, Agelopoulos K, Koutinas AA (1996) Continuous wine making by delignified cellulosic materials supported biocatalyst. An attractive process for industrial applications. Appl Biochem Biotechnol 60:303–313

    Article  CAS  Google Scholar 

  • Inoue T (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. Proc. Eur. Brew. Conv. Cong., pp 25–36

    Google Scholar 

  • Kana K, Kanellaki M, Papadimitriou A, Psarianos C, Koutinas AA (1989) Immobilization of Saccharomyces cerevisiae on γ-alumina pellets and its ethanol production in glucose and raisin extract fermentation. J Ferment Bioeng 68:213–215

    Article  CAS  Google Scholar 

  • Kopsahelis N, Kanellaki M, Bekatorou A (2007) Low temperature brewing using cells immobilized on brewer’s spent grains. Food Chem 104(2):480–488

    Article  CAS  Google Scholar 

  • Kosseva M, Beschkov V, Kennedy JF, Lloyd LL (1998) Malolactic fermentation in Chardonnay wine by immobilized Lactobacillus casei cells. Process Biochem 33:793–797

    Article  CAS  Google Scholar 

  • Kosseva MR, Kennedy JF (2004) Encapsulated lactic acid bacteria for control of malolactic fermentation in wine. Artif Cells Blood Substit Immobil Biotechnol 32:55–65

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Koutinas AA, Kanellaki M, Banat IM, Marchant R (2002) Continuous wine fermentation using a psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiol 19:127–134

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Komaitis M, Koutinas AA, Kaliafas A, Kanellaki M, Marchant R, Banat IM (2003) Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0°C. Food Chem 82:353–360

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Komaitis M, Koutinas AA, Kanellaki M (2001) Wine production using yeast immobilized on apple pieces at low and room temperatures. J Agric Food Chem 49:1417–1425

    Article  CAS  Google Scholar 

  • Kourkoutas Y, Manojlovic V, Nedovic V (2009) Immobilisation of microbial cells for alcoholic and malolactic fermentation of wine and cider. In: Zuidam N-J, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, The Netherlands, pp 327–345

    Google Scholar 

  • Koutinas AA, Bakoyianis V, Argiriou T, Kanellaki M, Voliotis S (1997) A qualitative outline to industrialize alcohol production by catalytic multistage fixed bed tower (MFBT) bioreactor. Appl Biochem Biotechnol 66:121–131

    Article  CAS  Google Scholar 

  • Kronlöf J, Härkönen T, Hartwall P, Home S, Linko M (1989) Main fermentation with immobilized yeast. Proc. 22nd Eur. Brew. Conv., Zurich, pp 355–362

    Google Scholar 

  • Kronlöf J, Virkajärvi I (1999). Primary fermentation with immobilized yeast. Proc. Eur. Brew. Conv. Cong., pp 761–770

    Google Scholar 

  • Landaud S, Latrille E, Corrieu G (2001) Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. J Inst Brew 107:107–117

    Article  CAS  Google Scholar 

  • Lebeau T, Jouenne T, Junter GA (1997) Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb Technol 21:265–272

    Article  CAS  Google Scholar 

  • Lemonnier J, Duteurtre B (1989) Un progress important pour le champagne et lens vins “methode traditionnelle”. Rev Fr Cenol 121:15–26

    Google Scholar 

  • Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  CAS  Google Scholar 

  • Linko M, Suihko M-L, Kronlöf J, Home S (1993) Use of brewer’s yeast expressing α-acetolactate decarboxylase in conventional and immobilized fermentations. Mast Brew Assoc Am Techn Quart 30:93–97

    CAS  Google Scholar 

  • Linko M, Virkajärvi I, Pohjala N, Lindborg K, Kronlöf J, Pajunen E (1997) Main fermentation with immobilized yeast – a breakthrough? Proc. 26th Eur. Brew. Conv. Maastricht, pp 385–394

    Google Scholar 

  • Lommi H (1990) Immobilized yeast for maturation and alcohol-free beer. Brew Dist Int 5:22–23

    Google Scholar 

  • Loukatos P, Kiaris M, Ligas I, Bourgos G, Kanellaki M, Komaitis M, Koutinas AA (2000) Continuous wine making by γ-alumina-supported biocatalyst. Quality of the wine and distillates. Appl Biochem Biotechnol 89:1–13

    Article  CAS  Google Scholar 

  • Lovitt R, Jung I, Jones M (2006) The performance of the membrane bioreactor for the malolactic fermentation of media containing ethanol. Desalination 199:435–437

    Article  CAS  Google Scholar 

  • Maeba H, Unemoto S, Sato M, Shinotsuka K (2000) Primary fermentation with immobilized yeast in porous chitosan beads. Pilot scale trial. Proc. 26th Conv. Inst. Brew. Aus. N.Z. Sec. Singapore, pp 82–86

    Google Scholar 

  • Maicas S, Gil J-V, Pardo I, Ferrer S (1999) Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res Int 32:491–496

    Article  CAS  Google Scholar 

  • Mallios P, Kourkoutas Y, Iconomopoulou M, Koutinas AA, Psarianos C, Marchant R, Banat IM (2004) Low temperature wine-making using yeast immobilized on pear pieces. J Sci Food Agric 84:1615–1623

    Article  CAS  Google Scholar 

  • Mallouchos A, Loukatos P, Bekatorou A, Koutinas A, Komaitis M (2007) Ambient and low temperature wine-making by immobilized cells on brewer’s spent grains: Effect on volatile composition. Food Chem 104(3):918–927

    Article  CAS  Google Scholar 

  • Mallouchos A, Reppa P, Aggelis G, Koutinas AA, Kanellaki M, Komaitis M (2002) Grape skins as a natural support for yeast immobilization. Biotechnol Lett 24:1331–1335

    Article  CAS  Google Scholar 

  • Manojlovic V, Agouridis N, Kopsahelis N, Kanellaki M, Bugarski B, Nedovic V (2008) Brewing by immobilized freeze dried cells in a novel gas flow bioreactor. Proc. 2008 Joint Central Europ. Cong. Food, 6th Croat. Cong. Food Technol. Biotechnol. Nutrit. Cavtat, Croatia 2, pp 327–334

    Google Scholar 

  • Manojlovic V, Nedovic V, Bugarski B, Winkelhausen E, Velickova E, Petrov P, Ivan B, and Tsvetanov C (2009). Immobilized yeast cells in double-layer hydrogel carriers for beer production. Proc. COST Spring workshop on bioencapsulation, Luxembourg, p 112

    Google Scholar 

  • Manojlovic V, Sipsas V, Agouridis N, Bugarski B, Leskosek-Cukalovic I, Kanellaki M, and Nedovic V (2007). Beer fermentation by immobilized yeast in PVA/alginate beads using a catalytic multistage fixed bed tower bioreactor. Proc. 5th Int. Cong. Food Technol. Thessaloniki, Greece, pp 219–222

    Google Scholar 

  • Martynenko NN, Gracheva IM, Sarishvili NG, Zubov AL, El’Registan GI, Lozinsky VI (2004) Immobilization of champagne yeasts by inclusion into cryogels of polyvinyl alcohol: Means of preventing cell release from the carrier matrix. Appl Biochem Microbiol 40:158–164

    Article  CAS  Google Scholar 

  • Masschelein CA, Ryder DS, Simon J-P (1994) Immobilized cell technology in beer production. Crit Rev Biotechnol 14:155–177

    Article  CAS  Google Scholar 

  • Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1996) Applications of immobilized yeast cells in the brewing industry. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier, Amsterdam, pp 661–671

    Google Scholar 

  • Mensour N, Margaritis A, Briens CL, Pilkington H, Russell I (1997) New developments in the brewing industry using immobilised yeast cell bioreactor systems. J Inst Brew 103:363–370

    Article  CAS  Google Scholar 

  • Moll M, Durand G, Blachere H (1973) Continuous production of fermented liquids. French Patent 73/23397. US Patent 4009286

    Google Scholar 

  • Narziss L, Hellich P (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres. Brauwelt 111:1491–1500

    CAS  Google Scholar 

  • Nedovic V, Bezbradica D, Obradovic B, Leskosek-Cukalovic I, Bugarski B (2004). Primary beer fermentation by PVA-immobilized brewing yeast in a gas-lift bioreactor. World Brew. Cong. 2004 CD Rom Proc. San Diego CA, pp O-63

    Google Scholar 

  • Nedovic V, Cukalovic IL, Bezbradica D, Obradovic B, Bugarski B (2005b) New porous matrices and procedures for yeast cell immobilisation for primary beer fermentation. Proc. 30th Eur. Brew. Conv. Prague, pp 401–413

    Google Scholar 

  • Nedovic V, Durieux A, Van Nederveide L, Rosseels P, Vandegans J, Plaisant AM, Simon J-P (2000) Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme Microb Technol 26:834–839

    Article  CAS  Google Scholar 

  • Nedovic V, Obradovic B, Vunjak-Novakovic G, Leskosek-Cukalovic I (1993) Kinetics of beer fermentation with immobilized yeast cells in an internal-loop air-lift bioreactor. Chem Indus 47:168–172

    CAS  Google Scholar 

  • Nedovic V, Vunjak-Novakovic G, Leskosek-Cukalovic I, Cutkovic M (1996) A study on considerable accelerated fermentation of beer using an airlift bioreactor with calcium alginate entrapped yeast cells. Proc 5th World Cong Chem Eng 2:474–479

    Google Scholar 

  • Nedovic V, Willaert R (eds) (2004) Fundamentals of cell immobilisation biotechnology. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Nedovic V, Willaert R, Leskosek-Cukalovic I, Obradovic B, Bugarski B (2005b) Beer production using immobilized cells. In: Nedovic V, Willaert R (eds) Applications of cell immobilisation biotechnology. Springer, Dordrecht, The Netherlands, pp 259–273

    Chapter  Google Scholar 

  • Norton S, D’Amore T (1994) Physiological effects of yeast cell immobilization applications for brewing. Enzyme Microb Technol 16:365–375

    Article  CAS  Google Scholar 

  • Obradovic B, Nedovic V, Bugarski B, Willaert RG, Vunjak-Novakovic G (2004) In: Nedovic V, Willaert RG (eds) Fundamentals of cell immobilisation biotechnology, vol 8a, Focus on biotechnology. Kluwer, Dordrecht, pp 411–436

    Google Scholar 

  • Ogbonna JC, Matsumura M, Kataoka H (1991) Effective oxygenation of immobilized cells through reduction in bead diameters: a review. Process Biochem 26:109–121

    Article  CAS  Google Scholar 

  • Okabe M, Katoh M, Furugoori F, Yoshida M, Mitsui S (1992) Growth and fermentation characteristics of bottom brewer’s yeast under mechanical stirring. J Ferment Bioeng 73(2):148–152

    Article  CAS  Google Scholar 

  • Onaka T, Nakanishi K, Inoue T, Kubo S (1985) Beer brewing with immobilized yeast. Nat Bio/Technol 3:467–470

    Article  CAS  Google Scholar 

  • Pajic-Lijakovic I, Plavsic M, Nedovic V, Bugarski B (2007) Ca-alginate hydrogel mechanical transformations – the influence of yeast cell growth dynamics. J Microencapsul 24(5):410–429

    Article  CAS  Google Scholar 

  • Pajunen E, Grönqvist A (1994) Immobilized yeast fermenters for continuous lager beer maturation. Proc. 23rd Conv. Inst. Brew. Aus. N.Z. Sec., Sydney, pp 101–103

    Google Scholar 

  • Pajunen E, Tapani K, Berg H, Ranta B, Bergin J, Lommi H, Viljava T (2001) Controlled beer fermentation with continuous on-stage immobilized yeast reactor. Proc 28th EBC Cong 49:1–12

    Google Scholar 

  • Peddie HAB (1990) Ester formation in brewery fermentations. J Inst Brew 96:327–331

    Article  CAS  Google Scholar 

  • Peinado RA, Moreno JJ, Maestre O, Mauricio JC (2005) Use of a novel immobilization yeast system for winemaking. Biotechnol Lett 27:1421–1424

    Article  CAS  Google Scholar 

  • Peinado RA, Moreno JJ, Villalba JM, González-Reyes JA, Ortega JM, Mauricio JC (2006) Yeast biocapsules: a new immobilization method and their applications. Enzyme Microb Technol 40:79–84

    Article  CAS  Google Scholar 

  • Pittner H, Back W, Swinkels W, Meersman E, Van Dieren B, Lomni H (1993) Continuous production of acidified wort for alcohol-free-beer with immobilized lactic acid bacteria. Proc. Eur. Brew. Conv. Cong., pp 323–329

    Google Scholar 

  • Plessas S, Bekatorou A, Koutinas AA, Soupioni M, Banat IM, Marchant R (2007) Use of Saccharomyces cerevisiae cells immobilized on orange peel as biocatalyst for alcoholic fermentation. Bioresour Technol 98(4):860–865

    Article  CAS  Google Scholar 

  • Prusse U, Bilancetti L, Bučko M, Bugarski B, Bukowski J, Gemeiner P, Lewinska D, Manojlovic V, Massart B, Nastruzzi C, Nedovic V, Poncelet D, Siebenhaar S, Tobler L, Tosi A, Vikartovská A, Vorlop K-D (2008) Comparison of different technologies for alginate beads production. Chem Pap 62(4):364–374

    Article  CAS  Google Scholar 

  • Renger RS, Vanhateren SH, Luyben K (1992) The formation of esters and higher alcohols during brewery fermentation – the effect of carbon-dioxide pressure. J Inst Brew 98:509–513

    Article  CAS  Google Scholar 

  • Ryder DS, Masschelein CA (1985) The growth process of brewing yeast and the biotechnological challenge. J Am Soc Brew Chem 43(2):66–75

    CAS  Google Scholar 

  • Scott JA, O’Reilly AM (1996) Co-immobilization of selected yeast and bacteria for controlled flavour development in an alcoholic cider beverage. Process Biochem 31(2):111–117

    Article  CAS  Google Scholar 

  • Shen H-Y, Moonjai N, Verstrepen KJ, Delvaux FR (2003) Impact of attachment immobilization on yeast physiology and fermentation performance. J Am Soc Brew Chem 61(2):79–87

    CAS  Google Scholar 

  • Shindo S, Sahara H, Koshino S (1994) Suppression of α-acetolactate formation in brewing with immobilized yeast. J Inst Brew 100:69–72

    Article  CAS  Google Scholar 

  • Simon JP, Durieux A, Pinnel V, Garré V, Vandegans J, Rosseels P, Godan N, Plaisant AM, Defroyennes J-P, Foroni G (1996) Organoleptic profiles of different ciders after continuous fermentation (encapsulated living cells) versus batch fermentation (free cells). In: Wijffels RH, Buitelaar RH, Bucke C, Tramper J (eds) Immobilized cells: basics and applications. Elsevier, Amsterdam, pp 615–621

    Google Scholar 

  • Sipsas V, Kolokythas G, Kourkoutas Y, Plessas S, Nedovic VA, Kanellaki M (2009) Comparative study of batch and continuous multi-stage fixed-bed tower (MFBT) bioreactor during wine-making using freeze-dried immobilized cells. J Food Eng 90:495–503

    Article  CAS  Google Scholar 

  • Smogrovicová D, Dömény Z (1999) Beer volatile by-product formation at different fermentation temperature using immobilized yeasts. Process Biochem 34:785–794

    Article  Google Scholar 

  • Smogrovicová D, Dömény Z, Gemeiner P, Malovíková A, Sturdík E (1997) Reactors for the continuous primary beer fermentation using immobilised yeast. Biotechnol Tech 11:261–264

    Article  Google Scholar 

  • Smogrovicová D, Dömény Z, Navrátil M, Dvorák P (2001) Continuous beer fermentation using polyvinyl alcohol entrapped yeast. Proc Eur Brew Conv Cong 50:1–9

    Google Scholar 

  • Strand BL, Gaserod B, Kulseng B, Espevik T, Skjak-Braek GJ (2002) Alginate-polylysine-alginate microcapsules: effect of size-reduction on capsule properties. J Microencapsul 19:615–630

    Article  CAS  Google Scholar 

  • Takaya M, Matsumoto N, Yanase H (2002) Characterization of membrane bioreactor for dry wine production. J Biosci Bioeng 93:240–244

    CAS  Google Scholar 

  • Tata M, Bower P, Bromberg S, Duncombe D, Fehring J, Lau V, Ryder D, Stassi P (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol Prog 15:105–113

    Article  CAS  Google Scholar 

  • Thu B, Gaserod O, Paus D, Mikkelsen A, Skjak-Braek G, Toffanin R, Vittur F, Rizzo R (2000) Biopolymers 53:60–71

    Article  CAS  Google Scholar 

  • Tsakiris A, Bekatorou A, Psarianos C, Koutinas AA, Marchant R, Banat IM (2004a) Immobilization of yeast on dried raisin berries for use in dry white wine-making. Food Chem 87:11–15

    Article  CAS  Google Scholar 

  • Tsakiris A, Sipsas V, Bekatorou A, Mallouchos A, Koutinas AA (2004b) Red wine making by immobilized cells and influence on volatile composition. J Agric Food Chem 53:1357–1363

    Article  CAS  Google Scholar 

  • Unemoto S, Mitani Y, Shinotsuka K (1998) Primary fermentation with immobilized yeast in a fluidized bed reactor. Mast Brew Assoc Am Techn Quart 35:58–61

    Google Scholar 

  • Van De Winkel L, De Vuyst L (1997) Immobilized yeast cell systems in today’s breweries and tomorrow’s. Cerevisia 22(1):27–31

    Google Scholar 

  • Van De Winkel L, Van Beveren PC, Borremans E, Goossens E, Masschelein CA (1993) High performance immobilized yeast reactor design for continuous beer fermentation. Proc. 24th Eur. Brew. Conv. Congr., pp 307–314

    Google Scholar 

  • Van De Winkel L, Van Beveren PC, Masschelein CA (1991) The application of an immobilized yeast loop reactor to the continuous production of alcohol-free beer. Proc. Eur. Brew. Conv. Cong., pp 307–314

    Google Scholar 

  • Van Iersel MFM, Van Dieren B, Rombouts FM, Abee T (1999) Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 24:407–411

    Article  Google Scholar 

  • Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9(2):178–190

    Article  CAS  Google Scholar 

  • Veeranjaneya Reddy L, Harish Kumar Raddy Y, Prasanna Anjaneya Reddy L, Vijaya Sarathy Reddy O (2008) Wine production by novel yeast biocatalyst prepared by immobilization on watermelon (Citrullus vulgaris) ring pieces and characterization of volatile compounds. Process Biochem 43:748–752

    Article  CAS  Google Scholar 

  • Verbelen PJ, De Schutter DP, Delvaux F, Verstrepen KJ, Delvaux FR (2006) Immobilized yeast cell systems for continuous fermentation applications. Biotechnol Lett 28:1515–1525

    Article  CAS  Google Scholar 

  • Verbelen P, Nedovic VA, Manojlovic V, Delvaux F, Leskosek-Cukalovic I, Bugarski B, Willaert R (2009) Bioprocess intensification of beer fermentation using immobilised cells. In: Zuidam N-J, Nedovic VA (eds) Encapsulation technologies for food active ingredients and food processing. Springer, Dordrecht, The Netherlands, pp 303–327

    Google Scholar 

  • Verstrepen K, Derdelinckx G, Verachtert H, Delvaux FR (2003a) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–203

    CAS  Google Scholar 

  • Verstrepen KJ, Moonjai N, Derdelinckx G, Dufour J-P, Winderickx J, Thevelein JM, Pretorius IS, Delvaux FR (2003b) Genetic regulation of ester synthesis in brewer’s yeast: new facts, insights and implications for the brewer. In: Brewing yeast fermentation performance, vol 2, 2nd edn. Blackwell Science, Oxford, pp 234–248

    Google Scholar 

  • Verstrepen KJ, Reynolds TB, Fink GR (2004) Origins of variation in the fungal cell surface. Nat Rev Microbiol 2:533–540

    Article  CAS  Google Scholar 

  • Virkajärvi I, Krönlof J (1998) Long-term stability of immobilized yeast columns in primary fermentation. J Am Soc Brew Chem 56:70–75

    Google Scholar 

  • Virkajärvi I, Pohjala N (2000) Primary fermentation with immobilized yeast: effects of carrier materials on the flavour of the beer. J Inst Brew 106:311–318

    Article  Google Scholar 

  • Wainwright T (1973) Diacetyl - a review. J Inst Brew 79:451–470

    CAS  Google Scholar 

  • White FH, Portno AD (1979). The influence of wort composition on beer ester levels. Proc. Eur. Brew. Conv. Cong., pp 447–460

    Google Scholar 

  • Willaert R, Baron GV (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12:1–205

    Article  CAS  Google Scholar 

  • Willaert R, Nedovic V (2006) Primary beer fermentation by immobilised yeast – a review in flavour formation and control strategies. J Chem Technol Biotechnol 81:1353–1367

    Article  CAS  Google Scholar 

  • Xu TJ, Zhao XQ, Bai FW (2005) Continuous ethanol production using self-flocculating yeast in a cascade of fermentors. Enzyme Microb Technol 37:634–640

    Article  CAS  Google Scholar 

  • Yamauchi Y, Okamoto T, Murayama H, Kajino K, Amikura T, Hiratsu H, Nagara A, Kamiya T, Inoue T (1995) Rapid maturation of beer using an immobilized yeast bioreactor. 1. Heat conversion of α-acetolactate. J Biotechnol 38:101–108

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor A. Nedović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this paper

Cite this paper

Nedović, V.A., Manojlović, V., Bugarski, B., Willaert, R. (2010). State of the Art in Immobilized/Encapsulated Cell Technology in Fermentation Processes. In: Aguilera, J., Simpson, R., Welti-Chanes, J., Bermudez-Aguirre, D., Barbosa-Canovas, G. (eds) Food Engineering Interfaces. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7475-4_6

Download citation

Publish with us

Policies and ethics