Skip to main content

Variation, Use, and Misuse of Statistical Models: A Review of the Effects on the Interpretation of Research Results

  • Chapter
  • First Online:
Predictive Species and Habitat Modeling in Landscape Ecology

Abstract

The field of predictive habitat modeling evolved somewhat separately within the sub-disciplines of theoretical ecology, wildlife management, and landscape ecology. This chapter suggests that this is due to slightly different worldviews, cultures, and research applications within each subfield (Table 11.1). Within the theoretical ecology literature, models of all kinds (e.g., movement, foraging, competition, demographic) have been widespread for many years. The evolution from descriptive models of habitat quality (e.g., Whittaker and McCuen 1976), to mathematical formulations of niche (e.g., Austin 1985), to spatially-explicit predictive habitat models (e.g., Saarenmaa et al. 1988) was a gradual one. The driving force in this literature appears to be underlying theoretical formulations of a host of ecological processes and interactions (e.g., population dynamics, movement, predation, competition).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64:912–923.

    Article  Google Scholar 

  • Anderson DR, Link WA, Johnston DJ, Burnham KP (2001) Suggestions for presenting the results of data analysis. J Wildl Manag 65:373–378.

    Article  Google Scholar 

  • Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918.

    Article  Google Scholar 

  • Austin MP (1985) Continuum concept, ordination methods, and niche theory. Annu Rev Ecol Syst 16:39–61.

    Article  Google Scholar 

  • Borra S, DiCiaccio A (2002) Improving nonparametric regression methods by bagging and boosting. Comput Stat Data Anal 38:407–420.

    Article  Google Scholar 

  • Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Modell 157:281–300.

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group. Belmont, California.

    Google Scholar 

  • Breiman L (2001a) Random forests. Mach Learn 45:5–32.

    Article  Google Scholar 

  • Breiman L (2001b) Statistical modeling: the two cultures. Stat Sci 16: 199–231.

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. 2nd edition. Springer, New York.

    Google Scholar 

  • Busby JR (1991) BIOCLIM – a bioclimate analysis and prediction system. In: Margules CR, Austin MR (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne.

    Google Scholar 

  • Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2:667–680.

    Article  Google Scholar 

  • Clark JD, Dunn JE, Smith KG (1993) A multivariate model of female black bear habitat use for a geographic information system. J Wildl Manag 7:519–526.

    Article  Google Scholar 

  • Chamberlin TC (1965) The method of multiple working hypotheses. Science 148:754–759.

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecol 81:3178–3192.

    Article  Google Scholar 

  • deFrutos A, Olea PP, Vera R (2007) Analyzing and modelling spatial distribution of summering lesser kestrel: the role of spatial autocorrelation. Ecol Modell 200:33–44.

    Article  Google Scholar 

  • Dettmers R, Buehler DA, Bartlett JB (2002) A test and comparison of wildlife-habitat modeling techniques for predicting bird occurrence at a regional scale. Pages 607–615 In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, W. A. Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC.

    Google Scholar 

  • Dzeroski S, Drumm D (2003) Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecol Modell 170:219–226.

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, DudĂ­k M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMC, Peterson AT, Philips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, SoberĂłn J, Williams S, Wisz MS, Zimmerman NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151.

    Article  Google Scholar 

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13:265–275.

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813.

    Article  CAS  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49.

    Article  Google Scholar 

  • Ferrier S, Drielsma M, Manion G, Watson G (2002) Extended statistical approaches to modelling spatial pattern in biodiversity: the northeast New South Wales experience II. Community level modelling. Biodivers Conserv 11:2309–2338.

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19:1–141.

    Article  Google Scholar 

  • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–407.

    Article  Google Scholar 

  • Garzon MB, Blazek R, Neteler M, Sanchez de Dios R, Ollero HS, Furlanello C (2006) Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol Modell 197:383–393.

    Article  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Mortiz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503.

    Article  PubMed  Google Scholar 

  • Graham CH, Elith J, Hijmans RJ, Guisan A, Peterson AT, Loiselle BA, NCEAS PSDWG (2008) The influence of spatial errors in species occurrence data used in distribution models. J Appl Ecol 45:239–247.

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186.

    Article  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007a) What matters for predicting the occurrences of trees: techniques, data or species’ characteristics? Ecol Monogr 77:615–630.

    Article  Google Scholar 

  • Guisan A, Graham CH, Elith J, Huettmann F, NCEAS SDMG (2007b) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340.

    Article  Google Scholar 

  • Guthrey FS, Brennan LA, Peterson MJ, Lusk JJ (2005) Information theory in wildlife science: critique and viewpoint. J Wildl Manag 69:457–465.

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36.

    CAS  PubMed  Google Scholar 

  • Hirzel AH, Arlettaz R (2003) Modeling habitat suitability for complex species distributions by environmental-distance geometric mean. Environ Manag 32:614–623.

    Article  Google Scholar 

  • Holloway GL, Malcolm JR (2006) Sciurid habitat relationships in forests managed under selection and shelterwood silviculture in Ontario. J Wildl Manag 70:1735–1745.

    Article  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674.

    Article  Google Scholar 

  • Jelaska SD, Antoni O, Nikoli T, Hrsak V, Plazibat M, Krizan J (2003) Estimating plant species occurrence in MTB/64 quadrants as a function of DEM-based variables-a case study for Medvednica Nature Park, Croatia. Ecol Modell 170:333–343.

    Article  Google Scholar 

  • Johnson DH (1999) The insignificance of statistical significance testing. J Wildl Manag 63:763–772.

    Article  Google Scholar 

  • Johnson DH (2002) The role of hypothesis testing in wildlife science. J Wildl Manag 66:272–286.

    Article  Google Scholar 

  • Keating KA, Cherry S (2004) Use and interpretation of logistic regression models in habitat selection studies. J Wildl Manag 68:774–789.

    Article  Google Scholar 

  • Li J, Hilbert DW (2008) LIVES: a new habitat modelling technique for predicting the distribution of species’ occurrences using presence-only data based on limiting factor theory. Biodivers Conserv 17:3079–3095.

    Article  Google Scholar 

  • Link WA, Barker RJ (2006) Model weights and the foundations of multimodel inference. Ecology 87:2626–2635.

    Article  PubMed  Google Scholar 

  • Lippitt CD, Rogan J, Toledana J, Sangermano F, Eastman JR, Mastro V, Sawyer A (2008) Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk. Ecol Modell 210:339–350.

    Article  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, Burlington, MA.

    Google Scholar 

  • Maisonneuve C, Belanger L, Bordage D, Jobin B, Grenier M, Beauliu J, Gabor S, Filion B (2006) American black duck and mallard duck breeding distribution and habitat relationships along a forest-agricultural gradient in southern Quebec. J Wildl Manag 70:450–459.

    Article  Google Scholar 

  • Manly BJF (1985) Measuring selectivity from multiple choice feeding-preference experiments. Biometrics 5:709–715.

    Google Scholar 

  • Manly BJF, McDonald LL, Thomas DL (1993) Resource selection by animals: statistical design and analysis for field studies. 1st edition. Chapman and Hall, London.

    Google Scholar 

  • Manly BJF, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2003) Resource selection by animals: statistical design and analysis for field studies. 2nd edition. Kluwer Academic Publishers, Dordrecht, NL.

    Google Scholar 

  • Miller J, Franklin J (2002) Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecol Modell 157:227–247.

    Article  Google Scholar 

  • Moisen GG, Freeman EA, Blackard JA, Frescino TS, Zimmermann NE, Edwards TC (2006) Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecol Modell 199:176–187.

    Article  Google Scholar 

  • Naugle DE, Higgins KF, Nusser SM, Johnson WC (1999) Scale-dependent habitat -use in three species of prairies wetland birds. Landsc Ecol 14:267–276.

    Article  Google Scholar 

  • Olivier F, Wotherspoon SJ (2005) GIS-based application of resource selection functions to the prediction of snow petrel distribution and abundance in East Antarctica: comparing models at multiple scales. Ecol Modell 189:105–129.

    Article  Google Scholar 

  • Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245.

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259.

    Article  Google Scholar 

  • Pittman SJ, Chistensen JD, Caldow C, Menza C, Monaco ME (2007) Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecol Modell 204:9–21.

    Article  Google Scholar 

  • Ribe R, Morganti R, Hulse D, Shull R (1998) A management driven investigation of landscape patterns of northern spotted owl nesting territories in the high Cascades of Oregon. Landsc Ecol 13:1–13.

    Article  Google Scholar 

  • Robinson DH, Wainer H (2002) On the past and future of null hypothesis significance testing. J Wildl Manag 66:263–271.

    Article  Google Scholar 

  • Rotenberry JT, Knick ST, Dunn JE (2002) A minimalist approach to mapping species’ habitat: Pearson’s planes of closest fit. Pages 281–289 In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC, USA.

    Google Scholar 

  • Saarenmaa H, Stone ND, Folse LJ, Packard JM, Grant WE, Makela ME, Coulson RN (1988) An artificial intelligence modelling approach to simulating animal/habitat interactions. Ecol Modell 44:125–141.

    Article  Google Scholar 

  • Sleep DJH, Drever MC, Nudds TD (2007) Statistical versus biological hypothesis testing: response to Steidl. J Wildl Manag 71:2120–2121.

    Article  Google Scholar 

  • SoberĂłn JM, Llorente JB, Onate L (2000) The use of specimen-label databases for conservation purposes: an example using Mexican Papilionid and Pierid butterflies. Biodivers Conserv 9:1441–1466.

    Article  Google Scholar 

  • Steidl RJ (2006) Model selection, hypothesis testing, and risks of condemning analytical tools. J Wildl Manag 70:1497–1498.

    Article  Google Scholar 

  • Steidl RJ (2007) Limits of data analysis in scientific inference: reply to Sleep et al. J Wildl Manag 71:2122–2124.

    Article  Google Scholar 

  • Stockwell DRB, Peters AT (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13: 143–158.

    Article  Google Scholar 

  • Tsoar A, Allouch O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of preesence-only methods for modelling species distribution. Divers Distrib 13:397–405.

    Article  Google Scholar 

  • VayssiĂ©res MP, Plant RE, Allen-Diaz BH (2000) Classification trees: an alternative non-parametric approach for predicting species distributions. J Veg Sci 11:679–694.

    Article  Google Scholar 

  • Whittaker GA, McCuen RH (1976) A proposed methodology for assessing the quality of wildlife habitat. Ecol Modell 2:251–272.

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS PSDWG (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:736–773.

    Google Scholar 

  • Yang X, Skidmore AK, Melick DR, Zhou Z, Xu J (2006) Mapping non-wood forest product (matsutake mushrooms) using logistic regression and a GIS expert system. Ecol Modell 198:208–218.

    Article  Google Scholar 

  • Yen PPW, Huettmann F, Cooke F (2004) A large-scale model for the at-sea distribution and abundance of Marbeled Murrelets (Brachyramphus marmoratus) during the breeding season in coastal British Columbia, Canada. Ecol Modell 171:395–413.

    Article  Google Scholar 

  • Zaniewski AE, Lehmann A, Overton JMC (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Modell 157:261–280.

    Article  Google Scholar 

Download references

Acknowledgments

F. Huettmann, M. Hooten, T. Lookingbill and two anonymous reviewers provided helpful comments on an earlier draft of this chapter. Also thanks to N. Laite for assistance with compilation of journal articles for the meta-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda F. Wiersma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+BUsiness Media, LLC

About this chapter

Cite this chapter

Wiersma, Y.F. (2011). Variation, Use, and Misuse of Statistical Models: A Review of the Effects on the Interpretation of Research Results. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7390-0_11

Download citation

Publish with us

Policies and ethics