Skip to main content

Advanced Topics

  • Chapter
  • First Online:
The Fundamentals of Modern Statistical Genetics

Part of the book series: Statistics for Biology and Health ((SBH))

  • 8524 Accesses

Abstract

In this chapter we review specialized and advanced topics that are beyond the scope that can be covered in detail in an introductory text book. However, the topics are important research areas and the interested reader is encouraged to follow-up our brief introduction with the specialized literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bateson W (1909) Mendel’s Principles of Heredity. Cambridge University Press, London

    Book  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29:1165–1188

    Article  MATH  MathSciNet  Google Scholar 

  • Clayton D, Chapman J, Cooper J (2004) Use of unphased multilocus genotype data in indirect association studies. Genetic Epidemiology 27(4):415–428

    Article  Google Scholar 

  • Cordell H (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics 11(20):2463–2468

    Article  Google Scholar 

  • Daly M, Rioux J, Schaffner S, Hudson T, Lander E (2001) High-resolution haplotype structure in the human genome. Nature Genetics 29(2):229–232

    Article  Google Scholar 

  • De Bakker P, Burtt N, Graham R, Guiducci C, Yelensky R, Drake J, Bersaglieri T, Penney K, Butler J, Young S, et al (2006) Transferability of tag SNPs in genetic association studies in multiple populations. Nature Genetics 38(11):1298–1303

    Article  Google Scholar 

  • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society 39:1–38

    MATH  MathSciNet  Google Scholar 

  • Gauderman W, Murcray C, Gilliland F, Conti D (2007) Testing association between disease and multiple SNPs in a candidate gene. Genetic Epidemiology 31:383–395

    Article  Google Scholar 

  • Genovese C, Roeder K, Wasserman L (2006) False discovery control with p-value weighting. Biometrika 93(3):509

    Article  MATH  MathSciNet  Google Scholar 

  • Giacomini K, Brett C, Altman R, Benowitz N, Dolan M, Flockhart D, Johnson J, Hayes D, Klein T, Krauss R, et al (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clinical Pharmacology & Therapeutics 81(3):328–345

    Article  Google Scholar 

  • Hoffmann T, Lange C, Vansteelandt S, Laird N (2009) Gene–environment interaction tests for dichotomous traits in trios and sibships. Genetic Epidemiology 33(8):691–699

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6(2):65–70

    MATH  MathSciNet  Google Scholar 

  • Horvath S, Xu X, Lake S, Silverman E, Weiss S, Laird N (2004) Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genetic Epidemiology 26:61–69

    Article  Google Scholar 

  • Ibrahim J (1990) Incomplete data in generalized linear models. Journal of the American Statistical Association 85:765–769

    Article  Google Scholar 

  • Ionita-Laza I, McQueen M, Laird N, Lange C (2007) Genomewide weighted hypothesis testing in family-based association studies, with an application to a 100 k scan. The American Journal of Human Genetics 81(3):607–614

    Article  Google Scholar 

  • Kwee L, Liu D, Lin X, Ghosh D, Epstein M (2008) A powerful and flexible multilocus association test for quantitative traits. The American Journal of Human Genetics 82:386–397

    Article  Google Scholar 

  • Lake S, Laird N (2004) Tests of gene–environment interaction for case–parent triads with general environmental exposures. Annals of Human Genetics 68(1):55–64

    Article  Google Scholar 

  • Lange C, Silverman E, Xu X, Weiss S, Laird N (2003a) A multivariate family-based association test using generalized estimating equations: FBAT-GEE. Biostatistics 4:195–206

    Article  MATH  Google Scholar 

  • Lasky-Su J, Faraone S, Lange C, Tsuang M, Doyle A, Smoller J, Laird N, Biederman J (2007) A study of how socioeconomic status moderates the relationship between SNPs encompassing BDNF and ADHD symptom counts in ADHD families. Behavior Genetics 37(3):487–497

    Article  Google Scholar 

  • Lunetta K, Faraone S, Biederman J, Laird N (2000) Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. American Journal of Human Genetics 66:605–614

    Article  Google Scholar 

  • Ottman R (1990) An epidemiologic approach to gene–environment interaction. Genetic Epidemiology 7(3):177–185

    Article  Google Scholar 

  • Phillips P (2008) Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nature Review Genetics 9(11):855–867

    Article  Google Scholar 

  • Rakovski C, Xu X, Lazarus R, Blacker D, Laird N (2007) A new multimarker test for family-based association studies. Genetic Epidemiology 31:9–17

    Article  Google Scholar 

  • Roeder K, Bacanu S, Sonpar V, Zhang X, Devlin B (2005) Analysis of single-locus tests to detect gene/disease associations. Genetic Epidemiology 28(3):207–219

    Article  Google Scholar 

  • Roeder K, Devlin B, Wasserman L (2007) Improving power in genome-wide association studies: weights tip the scale. Genetic Epidemiology 31(7):741–747

    Article  Google Scholar 

  • Schaid D (2001) Evaluating associations of haplotypes with traits. Genetic Epidemiology 27: 348–364

    Article  Google Scholar 

  • Sheskin D (2004) Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Simes R (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751–754

    Article  MATH  MathSciNet  Google Scholar 

  • Slatkin M, Excoffier L (1996) Testing for linkage disequilibrium in genotypic data using the expectation-maximization algorithm. Heredity 76:377–383

    Article  Google Scholar 

  • Storey J (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society 64:479–498

    Article  MATH  MathSciNet  Google Scholar 

  • Storey J (2003) The positive false discovery rate: a bayesian interpretation and the q-value. Annals of Statistics 31(6):2013–2035

    Article  MATH  MathSciNet  Google Scholar 

  • Umbach D, Weinberg C (2000) The use of case-parent triads to study joint effects of genotype and exposure. American Journal of Human Genetics 66(1):251–261

    Article  Google Scholar 

  • VanderWeele T (2010) Epistatic interactions. Statistical Applications in Genetics and Molecular Biology 9(1):1–22

    Article  MathSciNet  Google Scholar 

  • Vansteelandt S, DeMeo D, Su J, Smoller J, Murphy A, McQueen M, Schneiter K, Celedon J, Weiss S, Silverman E, Lange C (2008) Testing and estimating gene–environment interactions in family-based association studies. Biometrics 64(2):458–467

    Article  MATH  MathSciNet  Google Scholar 

  • Wang H, Thomas D, Pe’er I, Stram D (2006) Optimal two-stage genotyping designs for genome-wide association scans. Genetic Epidemiology 30(4):356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan M. Laird .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media. LLC

About this chapter

Cite this chapter

Laird, N.M., Lange, C. (2011). Advanced Topics. In: The Fundamentals of Modern Statistical Genetics. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7338-2_10

Download citation

Publish with us

Policies and ethics