Skip to main content

Biosynthesis and Function of Citrus Glycosylated Flavonoids

  • Chapter
  • First Online:
The Biological Activity of Phytochemicals

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 41))

Abstract

Citrus is one of the major crops in the world with notable consumption of fresh fruit and processed fruit products. Flavonoids and flavonoid glycosides in Citrus have an impact on consumer acceptance of fruit and fruit products as well as affecting human health. Glycosylation of flavonoids is a key modification process leading to the production of the compounds actually found in plant tissues. Citrus is known for synthesis and accumulation of significant levels of flavanone and flavone glycosides. Biosynthesis of the core flavonoids and modification reactions resulting in the synthesis of flavonoid glycosides in Citrus are reviewed, with emphasis on Citrus flavonoid glycosyltransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horowitz RM (1986) Taste effects of flavonoids. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine. Alan R. Liss Inc, NewYork, NY, pp 163–176

    Google Scholar 

  2. Berhow M, Tisserat B, Kanes K, Vandercook C (1998) Survey of phenolic compounds produced in Citrus. USDA ARS Technical Bull #158

    Google Scholar 

  3. Scora RW, Kumamoto J (1983) Chemotaxonomy of the genus Citrus. In: Waterman PG Grundon MF (eds) Chemistry and chemical taxonomy of the rutales. Academic Press, London, pp 343–351

    Google Scholar 

  4. Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, Haytowitz DB, Holden JM (2006) Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. J Food Compost Anal 19:S66–S73

    CAS  Google Scholar 

  5. Gattuso G, Barreca D, Gagiulli C, Leuzzi U, Caristi C (2007) Flavonoid composition of Citrus juices. Molecules 12:1641–1673

    CAS  PubMed  Google Scholar 

  6. Djoukeng JD, Arbona V, Argamasilla R, Gomez-Cadenas A (2008) Flavonoid profiling in leaves of Citrus genotypes under different environmental situations. J Agric Food Chem 56:11087–11097

    CAS  PubMed  Google Scholar 

  7. Kesterson JW, Hendrickson R (1957) Naringin, a bitter principle of grapefruit. Univ Fla Exp Stn Bull #511A

    Google Scholar 

  8. Hendrickson R, Kesterson JW (1964) Hesperidin in florida oranges. Univ Fla Exp Stn Bull #684

    Google Scholar 

  9. McIntosh CA, Mansell RL (1997) Three-dimensional analysis of limonin, limonoate a-ring monolactone, and naringin in the fruit of three varieties of Citrus paradisi. J Agric Food Chem 45:2876–2883

    CAS  Google Scholar 

  10. Mansell RL, McIntosh CA, Vest SE (1983) An analysis of the limonin and naringin content of grapefruit juice samples collected from florida state test houses. J Agric Food Chem 31:156–162

    CAS  Google Scholar 

  11. Barthe GA, Jourdan PS, McIntosh CA, Mansell RL (1988) Radioimmunoassay for the quantitative determination of hesperidin in Citrus sinensis. Phytochemistry 27:249–254

    CAS  Google Scholar 

  12. Jourdan PS, McIntosh CA, Mansell RL (1985) Naringin levels in Citrus tissues II. Quantitative distribution of naringin in Citrus paradisi Macfad. Plant Physiol 77:903–908

    CAS  PubMed  Google Scholar 

  13. Moriguchi T, Kita M, Tomono Y, Endo-Inagaki T, Omura M (2008) Gene expression in flavonoid biosynthesis: correlation with flavonoid accumulation in developing citrus fruit. Physiol Plant 111:66–74

    Google Scholar 

  14. Barthe GA, Jourdan PS, McIntosh CA, Mansell RL (1987) Naringin and limonin production in callus cultures and regenerated plants from Citrus sp. J Plant Physiol 127:55–65

    CAS  Google Scholar 

  15. Mansell RL, McIntosh CA (1991) Citrus spp.: in vitro culture and the production of naringin and limonin. In: Bajaj YPS (ed) Biotechnology of medicinal and aromatic plants, vol. 3. Springer, New York, NY, pp 193–210

    Google Scholar 

  16. Koca U, Berhow M, Febres V, Champ K, Carillo-Mendoza O, Moore G (2009) Decreasing unpalatable flavonoid components in citrus: the effect of transformation construct. Physiol Plant. doi:10.1111/j.1399- 3054.2009.01264.x

    Google Scholar 

  17. Neish AC (1960) Biosynthetic pathways of aromatic compounds. In: Machlis L, Briggs WR (eds) Annual review of plant physiology, vol. 11. Annual Reviews Inc, Palo Alto, CA, pp 55–80

    Google Scholar 

  18. Koukol J, Conn EE (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem 236:2692–2698

    CAS  PubMed  Google Scholar 

  19. Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C (2006) Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol 13(12):1317–1326

    CAS  PubMed  Google Scholar 

  20. Hanson KR, Havir EA (1979) An introduction to the enzymology of phenylpropanoid biosynthesis. In: Swain T et al (eds) Recent advances in phytochemistry, vol. 12. Plenum Press, New York, NY, pp 91–137

    Google Scholar 

  21. Heller W, Forkmann G (1994) Biosynthesis of flavonoids. In: Harborne JB (ed) The flavonoids: advances in research since 1986. Chapman and Hall, London, pp 499–536

    Google Scholar 

  22. Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis. Biochemistry 43(36):11403–11416

    CAS  PubMed  Google Scholar 

  23. Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16(12):3426–3436

    CAS  PubMed  Google Scholar 

  24. Riov J, Monselise SP, Kahan RS (1968) Effect of γ-radiation on PAL activity and accumulation of phenolic compounds in Citrus fruit. Radiat Bot 8:463–466

    CAS  Google Scholar 

  25. Maier VP, Hasegawa S (1970) l-Phenylalanine ammonia-lyase activity and naringenin glycoside accumulation in developing grapefruit. Phytochemistry 9:139–144

    CAS  Google Scholar 

  26. Thorpe TA, Maier VP, Hasegawa S (1971) Phenylalanine ammonia-lyase activity in citrus fruit tissue cultured in vitro. Phytochemistry 10:711–718

    CAS  Google Scholar 

  27. Riov J, Monselise SP, Kahan RS (1969) Ethylene-controlled induction of phenylalanine ammonia-lyase in citrus fruit peel. Plant Physiol 44(5):631–635

    CAS  PubMed  Google Scholar 

  28. Sanchez-Ballesta MT, Lafuente MT, Zacarias L, Granell A (2000) Involvement of phenylalanine ammonia-lyase in the response of fortune mandarin fruits to cold temperature. Physiol Plant 108(4):382–389

    CAS  Google Scholar 

  29. Lucheta AR, Silva-Pinhati ACO, Basilio-Palmieri AC, Berger IJ, Freitas-Astua J, Cristofani M (2007) An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis. Genet Mol Biol 30(3):819–831

    CAS  Google Scholar 

  30. Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon R, Lamb CJ, Schuch W (1989) Phenylalanine ammonia lyase gene organization and structure. Plant Mol Biol 12:367–383

    CAS  Google Scholar 

  31. Cochrane FC, Davin LB, Lewis NG (2004) The arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65(11):1557–1564

    CAS  PubMed  Google Scholar 

  32. Sanchez-Ballesta MT, Zacarias L, Granell A, Lafuente MT (2000) Accumulation of PAL transcript and PAL activity as affected by heat-conditioning and low-temperature storage and its relation to chilling sensitivity in mandarin fruits. J Agric Food Chem 48(7):2726–2731

    CAS  PubMed  Google Scholar 

  33. Lafuente MT, Zacarias L, Martinez-Tellez MA, Sanchez-Ballesta MT, Dupille E (2001) Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J Agric Food Chem 49(12):6020–6025

    CAS  PubMed  Google Scholar 

  34. Lafuente MT, Sala JM, Zacarias L (2004) Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. J Agric Food Chem 52(11):3606–3611

    CAS  PubMed  Google Scholar 

  35. Oufedjikh H, Mahrouz M, Amiot MJ, Lacroix M (2000) Effect of gamma-irradiation on phenolic compounds and phenylalanine ammonia-lyase activity during storage in relation to peel injury from peel of Citrus clementina Hort. ex. Tanaka. J Agric Food Chem 48(2):559–565

    CAS  PubMed  Google Scholar 

  36. Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. In: Jones RL et al (eds) Annual review of plant physiology and plant molecular biology, vol. 49. Annual Reviews, Palo Alto, CA, pp 311–343

    Google Scholar 

  37. Russell DW, Conn EE (1967) The cinnamic 4-hydroxylase of pea seedlings. Arch Biochem Biophys 122:256–258

    CAS  PubMed  Google Scholar 

  38. Russell D (1971) The metabolism of aromatic compounds in higher plants: X. Properties of the cinnamic 4-hydroxylase of pea seedlings and some aspects of its metabolic and experimental control. J Biol Chem 246(12):3870–3878

    CAS  PubMed  Google Scholar 

  39. Gabriac B, Werck-Reichhart D, Teutsch H, Durst F (1991) Purification and immunocharacterization of a plant cytochrome P450: the cinnamic acid 4-hydroxylase. Arch Biochem Biophys 288(1):302–309

    CAS  PubMed  Google Scholar 

  40. Mizutani M, Ohta D, Sato R (1993) Purification and characterization of a cytochrome P450 (trans-cinnamic acid 4-hydroxylase) from etiolated mung bean seedlings. Plant Cell Physiol 34:481–488

    CAS  Google Scholar 

  41. Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werck-Reichhart D (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci USA 90(9):4102–4106

    CAS  PubMed  Google Scholar 

  42. Fahrendorf T, Dixon RA (1993) Stress responses in alfalfa (Medicago sativa L.) XVIII: Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch Biochem Biophys 305(2):509–515

    CAS  PubMed  Google Scholar 

  43. Ro DK, Mah N, Ellis BE, Douglas CJ (2001) Functional characterization and subcellular localization of poplar (Populus trichocarpa x Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126(1):317–329

    CAS  PubMed  Google Scholar 

  44. Winkel-Shirley B (1999) Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol Plant 107:142–149

    CAS  Google Scholar 

  45. Betz C, McCollum TG, Mayer RT (2001) Differential expression of two cinnamate 4-hydroxylase genes in ‘valencia’ orange (Citrus sinensis Osbeck) Plant Mol Biol 46(6):741–748

    CAS  PubMed  Google Scholar 

  46. Hahlbrock K, Grisebach H (1970) Formation of coenzyme a esters of cinnamic acids with an enzyme preparation from cell suspension cultures of parsley. FEBS Lett 11(1):62–64

    CAS  PubMed  Google Scholar 

  47. Hamberger B, Hahlbrock K (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci USA 101(7):2209–2214

    CAS  PubMed  Google Scholar 

  48. Heller W, Forkmann G (1988) Biosynthesis. In: Harborne JB (ed) The flavonoids: advances in research since 1980. Chapman and Hall, London, pp 399–425

    Google Scholar 

  49. Kreuzaler F, Hahlbrock K (1972) Enzymatic synthesis of aromatic compounds in higher plants: formation of naringenin (5,7,4ʹ-trihydroxyflavanone) from p-coumaroyl coenzyme A and malonyl coenzyme A. FEBS Lett 28(1):69–72

    CAS  PubMed  Google Scholar 

  50. Kreuzaler F, Mahlberook K (1975) Enzymatic synthesis of an aromatic ring from acetate unit: parital purification and some properties of flavanone synthase from cell suspension cultures of Petroselinium hortense. Eur J Biochem 56:205–213

    CAS  PubMed  Google Scholar 

  51. Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775–784

    CAS  PubMed  Google Scholar 

  52. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110

    CAS  PubMed  Google Scholar 

  53. Reimold U, Kroger M, Kreuzaler F, Hahlbrock K (1983) Coding and 3 non-coding nucleotide sequence of chalcone synthase mRNA and assignment of amino acid sequence of the enzyme. EMBO J 2(10):1801–1805

    CAS  PubMed  Google Scholar 

  54. Schijlen EWGM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    CAS  PubMed  Google Scholar 

  55. Lewinsohn E, Britsch L, Mazur Y, Gressel J (1989) Flavanone glycoside biosynthesis in Citrus: chalcone synthase, UDP-glucose:flavanone-7-O-glucosy-transferase and -rhamnosyltransferase activities in cell-free extracts. Plant Physiol 91:1321–1328

    Google Scholar 

  56. Moriguchi T, Kita M, Tomono Y, EndoInagaki T, Omura M (1999) One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures. Plant Cell Physiol 40(6):651–655

    CAS  PubMed  Google Scholar 

  57. Moriguchi T, Kita M, Tomono Y, Endo-Inagaki T, Omura M (2001) Gene expression in flavonoid biosynthesis: correlation with flavonoid accumulation in developing citrus fruit. Physiol Plant 111(1):66–74

    CAS  Google Scholar 

  58. Lu X, Zhou W, Gao F (2009) Cloning, characterization and localization of CHS gene from blood orange, Citrus sinensis (L.) Osbeck cv. Ruby. Mol Biol Rep 36(7):1983–1990

    CAS  PubMed  Google Scholar 

  59. Koca U (2007) Elevation of the flavonoid content in grapefruit by introducing chalcone isomerase gene via biotechnological methods. Turk J Pharm Sci 4(3):115–124

    CAS  Google Scholar 

  60. Bednar RA, Hadcock JR (1988) Purification and characterization of chalcone isomerase from soybeans. J Biol Chem 263(20):9582–9588

    CAS  PubMed  Google Scholar 

  61. Moustafa E, Wong E (1967) Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6:625–632

    CAS  Google Scholar 

  62. Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Biol 7(9):786–791

    CAS  PubMed  Google Scholar 

  63. Shimokoriyama M (1957) Interconversion of chalcones and flavanones of phloroglucinol-type structure. J Am Chem Soc 79(15):4199–4202

    CAS  Google Scholar 

  64. Raymond WR, Maier VP (1977) Chalcone cyclase and flavonoid biosynthesis in grapefruit. Phytochemistry 16:1535–1539

    CAS  Google Scholar 

  65. McIntosh C, Mansell R (1990) Biosynthesis of naringin in Citrus paradisi: UDP-glucosyltransferase activity in grapefruit seedlings. Phytochemistry 29:1533–1538

    CAS  Google Scholar 

  66. Fouche SD, Dubery IA (1994) Chalcone isomerase from Citrus sinensis: purification and characterization. Phytochemistry 37:127–132

    CAS  Google Scholar 

  67. Britsch L, Heller W, Grisebach. H (1981) Conversion of flavanone to flavone, dihydroflavonol and flavonol with an enzyme system from cell cultures of parsley. Z Naturforsch 36C:742–750

    CAS  Google Scholar 

  68. Britsch L, Grisebach H (1986) Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur J Biochem 156(3):569–577

    CAS  PubMed  Google Scholar 

  69. Britsch L, Dedio J, Saedler H, Forkmann G (1993) Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 217(2):745–754

    CAS  PubMed  Google Scholar 

  70. Lukacin R, Britsch RLL (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase. Eur J Biochem 249:748–757

    CAS  PubMed  Google Scholar 

  71. Lukacin R, Groning I, Schiltz E, Britsch L, Matern U (2000) Purification of recombinant flavanone 3β-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Arch Biochem Biophys 375(2):364–370

    CAS  PubMed  Google Scholar 

  72. Wellmann F, Matern U, Lukacin R (2004) Significance of C-terminal sequence elements for petunia flavanone 3β-hydroxylase activity. FEBS Lett 561(1-3):149–154

    CAS  PubMed  Google Scholar 

  73. Owens DK, Crosby KC, Runac J, Howard B, Winkel BS (2008) Biochemical and genetic characterization of arabidopsis flavanone 3-hydroxylase. Plant Physiol Biochem 46:833–843

    CAS  PubMed  Google Scholar 

  74. Punyasiri PA, Abeysinghe IS, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431(1):22–30

    CAS  PubMed  Google Scholar 

  75. Halbwirth H, Fischer TC, Schlangen K, Rademacher W, Schleifer K, Forkmann G, Stitch K (2006) Screening for inhibitors of 2-oxoglutarate-dependent dioxygenases: flavanone 3-hydroxylase and flavonol synthase. Plant Sci 171:194–205

    CAS  Google Scholar 

  76. Owens DK, Hale T, Wilson LJ, McIntosh CA (2002) Quantification of the production of dihydrokaempferol by flavanone 3-hydroxytransferase using capillary electrophoresis. Phytochem Anal 13(2):69–74

    CAS  PubMed  Google Scholar 

  77. Pelt JL, Downes WA, Schoborg RV, McIntosh CA (2003) Flavanone 3-hydroxylase expression in Citrus paradisi and Petunia hybrida seedlings. Phytochemistry 64(2):435–444

    CAS  PubMed  Google Scholar 

  78. Sutter A, Poulton J, Grisebach H (1975) Oxidation of flavanone to flavone with cell-free extracts from young parsley leaves. Arch Biochem Biophys 170(2):547–556

    CAS  PubMed  Google Scholar 

  79. Martens S, Forkmann G, Matern U, Lukacin R (2001) Cloning of parsley flavone synthase I. Phytochemistry 58:43–46

    CAS  PubMed  Google Scholar 

  80. Stotz G, Forkmann G (1981) Oxidation of flavanones to flavones with flower extracts of Antirrhinum majus (snapdragon). Z Naturforsch 36C:737–741

    CAS  Google Scholar 

  81. Martens S, Mithofer A (2005) Flavones and flavone synthases. Phytochemistry 66(20):2399–2407

    CAS  PubMed  Google Scholar 

  82. Yun CS, Yamamoto T, Nozawa A, Tozawa Y (2008) Expression of parsley flavone synthase I establishes the flavone biosynthetic pathway in Arabidopsis thaliana. Biosci Biotechnol Biochem 72(4):968–973

    CAS  PubMed  Google Scholar 

  83. Spribille R, Forkmann G (1984) Conversion of dihydroflavonols to flavonols with enzyme extracts from flower buds of Matthiola incana. Z Naturforsch 39C:714–719

    CAS  Google Scholar 

  84. Stitch K, Eidenberger T, Wurst F, Forkmann G (1992) Flavonol synthase activity and the regulation of flavonol and anthocyanin biosynthesis during flower development in Dianthus caryophyllus. Z Naturforsch 47C:553–560

    Google Scholar 

  85. Holton TA, Brugliera F, Tanaka Y (1993) Cloning and expression of flavonol synthase from Petunia hybrida. Plant J 4(6):1003–1010

    CAS  PubMed  Google Scholar 

  86. Pelletier MK, Murrell JR, Shirley BW (1997) Characterization of flavonol synthase and leucoanthocyanidin dioxygenase genes in arabidopsis. Further evidence for differential regulation of “early” and “late” genes. Plant Physiol 113(4):1437–1445

    CAS  PubMed  Google Scholar 

  87. Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH, Winkel BS (2008) Functional analysis of a predicted flavonol synthase gene family in arabidopsis. Plant Physiol 147(3):1046–1061

    CAS  PubMed  Google Scholar 

  88. Lukacin R, Britsch L (1997) Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3β-hydroxylase. Eur J Biochem 249(3):748–757

    CAS  PubMed  Google Scholar 

  89. Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10(1):93–103

    CAS  PubMed  Google Scholar 

  90. Stracke R, De Vos RC, Bartelniewoehner L, Ishihara H, Sagasser M, Martens S, Weisshaar B (2009) Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase. Planta 229(2):427–445

    CAS  PubMed  Google Scholar 

  91. Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U, Martens S (2009) Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett 583(12):1981–1986

    CAS  PubMed  Google Scholar 

  92. Moriguchi T, Kita M, Ogawa K, Tomono Y, Endo T, Omura M (2002) Flavonol synthase gene expression during citrus fruit development. Physiol Plant 114(2):251–258

    CAS  PubMed  Google Scholar 

  93. Wellmann F, Lukacin R, Moriguchi T, Britsch L, Schiltz E, Matern U (2002) Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. Eur J Biochem 269(16):4134–4142

    CAS  PubMed  Google Scholar 

  94. Prescott AG, Stamford NPJ, Wheeler G, Firmin JL (2002) In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 60:589–593

    CAS  PubMed  Google Scholar 

  95. Lukacin R, Wellmann F, Britsch L, Martens S, Matern U (2003) Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Phytochemistry 62(3):287–292

    CAS  PubMed  Google Scholar 

  96. Stafford HA, Lester HH (1982) Enzymic and nonenzymic reduction of (+)-dihydroquercetin to its 3,4,-diol. Plant Physiol 70(3):695–698

    CAS  PubMed  Google Scholar 

  97. Heller W, Britsch L, Forkmann G, Grisebach H (1985) Leucoanthocyanidins as intermediates in anthocyanin biosynthesis in flowers of Matthiola incana. R. Br. Planta 163(2):191–196

    CAS  Google Scholar 

  98. Heller W, Forkmann G, Britsch L, Grisebach H (1985) Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis. Planta 165(2):284–287

    CAS  Google Scholar 

  99. Fischer D, Stich K, Britsch L, Grisebach H (1988) Purification and characterization of (+)dihydroflavonol (3-hydroxyflavanone) 4-reductase from flowers of Dahlia variabilis. Arch Biochem Biophys 264(1):40–47

    CAS  PubMed  Google Scholar 

  100. Yu O, Matsuno M, Subramanian S (2006) Flavonoid compounds in flowers: genetics and biochemistry. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology, vol. 1. Global Sciences Book, London, pp 282–292

    Google Scholar 

  101. Lo Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53(23):9083–9088

    CAS  PubMed  Google Scholar 

  102. Lo Piero AR, Puglisi I, Petrone G (2006) Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus sinensis (L.) Osbeck]. Phytochemistry 67(7):684–695

    CAS  PubMed  Google Scholar 

  103. Reddy GM, Coe EH Jr (1962) Inter-tissue complementation: a simple technique for direct analysis of gene-action sequence. Science 138(3537):149–150

    CAS  PubMed  Google Scholar 

  104. Menssen A, Hohmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A (1990) The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9(10):3051–3057

    CAS  PubMed  Google Scholar 

  105. Saito K, Kobayashi M, Gong Z, Tanaka Y, Yamazaki M (1999) Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red form of Perilla frutescens. Plant J 17(2):181–189

    PubMed  Google Scholar 

  106. Turnbull JJ, Sobey WJ, Aplin RT, Hassan A, Firmin JL, Schofield CJ, Prescott AG (2000) Are anthocyanidins the immediate products of anthocyanidin synthase? Chem Commun 24:2473–2474

    Google Scholar 

  107. Martens S, Forkmann G, Britsch L, Wellmann F, Matern U, Lukacin R (2003) Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley. FEBS Lett 544(1–3):93–98

    CAS  PubMed  Google Scholar 

  108. Turnbull JJ, Nakajima J, Welford RW, Yamazaki M, Saito K, Schofield CJ (2004) Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3β-hydroxylase. J Biol Chem 279(2):1206–1216

    CAS  PubMed  Google Scholar 

  109. Cotroneo PS, Russo MP, Ciuni M, Recupero GR (2006) Quantitative real-time reverse transcriptase-PCR profiling of anthocyanin biosynthetic genes during orange fruit ripening. J Amer Soc Hort Sci 131(4):537–543

    CAS  Google Scholar 

  110. Fritsch H, Grisebach. H (1975) Biosynthesis of cyanidin in cell cultures of Haplopappus gracillus. Phytochemistry 14:2437–2442

    CAS  Google Scholar 

  111. Hagmann ML, Heller W, Grisebach H (1983) Induction and characterization of a microsomal flavonoid 3-hydroxylase from parsley cell cultures. Eur J Biochem 134(3):547–554

    CAS  PubMed  Google Scholar 

  112. Brugliera F, Barri-Rewell G, Holton TA, Mason JG (1999) Isolation and characterization of a flavonoid 3-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19(4):441–451

    CAS  PubMed  Google Scholar 

  113. Doostdar H, Shapiro JP, Niedz R, Burke MD, McCollum TG, McDonald RE, Mayer RT (1995) A cytochrome P450 mediated naringenin 3-hydroxylase from sweet orange cell cultures. Plant Cell Physiol 36(1):69–77

    CAS  Google Scholar 

  114. Stotz G, Forkmann G (1982) Hydroxylation of the B-ring of flavonoids in the 3- and 5-position with enzyme extracts from the flowers of Verbena hybrida. Z Natuforsch 37C:19–23

    CAS  Google Scholar 

  115. Hertog MGL, Hollman PCH, van de Putte B (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 41:1242–1246

    CAS  Google Scholar 

  116. Maccarone E, Maccarone A, Perrini G, Rapisarda P (1983) Anthocyanins of the moro orange juice. Ann Chim 73:533–539

    CAS  Google Scholar 

  117. Maccarone E, Maccarone A, Rapisarda P (1985) Acylated anthocyanins from orange. Ann Chim 75:79–86

    CAS  Google Scholar 

  118. Dugo P, Mondello L, Morabito D, Dugo G (2003) Characterization of the anthocyanin fraction of sicilian blood orange juice by micro-HPLC-ESI/MS. J Agric Food Chem 51(5):1173–1176

    CAS  PubMed  Google Scholar 

  119. Hillebrand S, Schwarz M, Winterhalter P (2004) Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice. J Agric Food Chem 52(24):7331–7338

    CAS  PubMed  Google Scholar 

  120. Jay M, Viricel MR, Gonnett JF (2006) C-Glycosylflavonoids. In: Anderson DM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications. CRC Press, Boca Raton, FL, pp 857–915

    Google Scholar 

  121. Lewinsohn E, Berman B, Mazur Y, Gressel J (1986) Glucosylation of exogenous flavanones by grapefruit (Citrus paradisi) cell cultures. Phytochemistry 25:2531–2535

    CAS  Google Scholar 

  122. Lewinsohn E, Berman E, Mazur Y, Gressel J (1989) (7) Glucosylation and (1-6) rhamnosylation of exogenous flavanones by undifferentiated Citrus cell cultures. Plant Sci 61:23–28

    CAS  Google Scholar 

  123. McIntosh C, Latchinian. L, Mansell R (1990) Flavanone-specific 7-O-glucosyltransferase activity in Citrus paradisi seedlings: purification and characterization. Arch Biochem Biophys 282:50–57

    CAS  PubMed  Google Scholar 

  124. Berhow M, Smolensky D (1995) Developmental and substrate specificity of hesperetin-7-O-glucosyltransferase activity in Citrus limon tissues using high performance liquid chromatographic analysis. Plant Sci 112:139–147

    CAS  Google Scholar 

  125. Durren RL, McIntosh CA (1999) Flavanone 7-O-glucosyltransferase activity from Petunia hybrida. Phytochemistry 52:793–798

    CAS  PubMed  Google Scholar 

  126. Owens DK, McIntosh CA (2009) Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochemistry 70:1382–1391

    CAS  PubMed  Google Scholar 

  127. Jourdan PS, Mansell RL (1982) Isolation and partial characterization of three glucosyl transferases involved in the biosynthesis of flavonol triglucosides in Pisum sativum L. Arch Biochem Biophys 213:434–443

    CAS  PubMed  Google Scholar 

  128. Kleinehollenhorst G, Behrens H, Pegels G, Srunk N, Weirmann R (1982) Formation of flavonol 3-O-diglycosides and flavonol 3-O-triglycosides by enzyme extracts from anthers of Tulipa cv. Apeldorn: characterization and activity of three different O-glycosyltransferases during anther development. Z Naturforsch 37:587–599

    Google Scholar 

  129. Bar-Peled M, Lewinsohn E, Fluhr R, Gressel J (1991) UDP-rhamnose:flavanone-7-O-glucoside-2-O-rhamnosyltransferase: purification and characterization of an enzyme catalyzing the production of bitter compounds in Citrus. J Biol Chem 266:20953–20959

    CAS  PubMed  Google Scholar 

  130. Frydman A, Weisshaus O, Bar-Peled M, Huhman D, Summer L, Marin F, Lewinsohn E, Fluhr R, Gressel J, Eyal Y (2004) Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of Citrus. Plant J 40:88–100

    CAS  PubMed  Google Scholar 

  131. Roysarkar T, Strong CL, Sibhatu MB, Pike LM, McIntosh CA (2007) Cloning, expression, and characterization of a putative flavonoid glucosyltransferase from grapefruit (Citrus paradisi) leaves. In: Nikolau BJ, Wurtele ES (eds) Concepts in plant metabolomics. Springer Publishing, Dordrecht, pp 247–259

    Google Scholar 

  132. Knisley D, Seier E, Lamb D, Owens D, McIntosh C (2009) A graph-theoretic model based on primary and predicted secondary structure reveals functional specificity in a set of plant secondary product UDP-glucosyltransferases. In: Loging W, Doble M, Sun Z, Malone J (eds) Proceedings of the 2009 international conference on bioinformatics, computational biology, genomics and chemoinformatics (BCBGC-09). ISBN: 978-1-60651-009-4, pp 65–72

    Google Scholar 

  133. Tanner DC (2000) Structural elucidation of flavanone 7-O-glucosyltransferase in grapefruit (Citrus paradisi) seedlings. M.A. Thesis, East Tennessee State University

    Google Scholar 

  134. Osmani SA, Bak S, Moller BL (2009) Substrate specificity of plant UDP-dependent glucosyltransferases predicted from crystal structures and homology modeling. Phytochemistry 70:325–347

    CAS  PubMed  Google Scholar 

  135. Kalinina OV, Gelfand MS, Russell RB (2009) Combining specificity determining and conserved residues improves functional site prediction. Bioinformatics. doi:10.1186/1471–2105–10–174

    Google Scholar 

  136. Kita M, Hirata Y, Moriguchi T, Endo-Inagaki T, Matsumoto R, Hasegawa S, Sunhayda CG, Omura M (2000) Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett 469:173–178

    CAS  PubMed  Google Scholar 

  137. Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    CAS  PubMed  Google Scholar 

  138. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X (2005) Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17:3141–3154

    CAS  PubMed  Google Scholar 

  139. Offen W, Martinez-Fleites C,, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford C, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    CAS  PubMed  Google Scholar 

  140. Ogata J, Itoh Y, Ishida M, Yoshida Y, Ozeki Y (2004) Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol 21:367–375

    CAS  Google Scholar 

  141. Kim JH, Park Y, Ko JH, Lim CE, Lim J, Lim Y, Ahn JH (2006) Characterization of flavonoid 7-O-glucosyltransferase from Arabidopsis thaliana. Biosci Biotechnol Biochem 70:1471–1477

    CAS  PubMed  Google Scholar 

  142. Do CB, Cormier F, Nicolas Y (1995) Isolation and characterization of a UDP-glucose:cyanidin 3-O-glucosyltransferase from grape cell suspension cultures (Vitis vinifera L.). Plant Sci 112:43–51

    CAS  Google Scholar 

  143. Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, Munoz-Blanco J, Schwab W (2008) Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragaria x Ananassa) achene and receptacle. J Exp Bot. doi:10.1093/jxb/ern117

    Google Scholar 

  144. Hartmann T (2007) From waste products to ecochemicals: 50 years research of plant secondary metabolism. Phytochemistry 68:2831–2846

    CAS  PubMed  Google Scholar 

  145. Gould KS, Lister C (2006) Flavonoid functions in plants. In: Anderson DM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications. CRC Press, Boca Raton, FL, pp 397–442

    Google Scholar 

  146. DelRio JA, Gomez P, Baidez AG, Arcas MC, Botia JM, Ortuno A (2004) Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of Citrus sinensis (cv. Valencia Late) fruits against Phytophthora citrophthora. J Agric Food Chem 52:1813–1917

    Google Scholar 

  147. Manthey JA, Grohman K, Berhow MA, Tisserat B (2000) Changes in citrus leaf flavonoid concentrations resulting from blight-induced zinc-deficiency. Plant Physiol Biochem 38:333–343

    CAS  Google Scholar 

  148. Ortuno A, Baidez A, Gomez P, Arcase MC, Porras I, Garcia-Lidon A, DelRio JA (2006) Citrus paradisi and Citrus sinensis flavonoids: Their influence in the defence mechanism against Penicillium digitatum. Food Chem 98:351–358

    CAS  Google Scholar 

  149. Clifford MN, Brown JE (2006) Dietary flavonoids and health – broadening the perspective. In: Anderson DM, Markham KR (eds) Flavonoids: chemistry, biochemistry, and applications. CRC Press, Boca Raton, FL, pp 319–370

    Google Scholar 

  150. Anderson, DM, Markham KR (eds) (2006) Flavonoids: chemistry, biochemistry, and applications. CRC Press, Boca Raton, FL

    Google Scholar 

  151. Passamonti S, Terdoslavich M, Franca R, Vanzo A, Tramer F, Braidot E, Petrussa E, Vianello A (2009) Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab 10:369–394

    CAS  PubMed  Google Scholar 

  152. Bhimanagouda SP, Turner ND, Miller EG, Brodbelt JS (eds) (2006) Potential health benefits of Citrus, ACS symposium series, vol 936

    Google Scholar 

  153. Datla KP, Zbarsky V, Rai D, Parkar S, Osakabe N, Aruoma OI, Dexter DT (2007) Short-term supplementation with plant extracts rich in flavonoids protect nigrostriatal dopaminergic neurons in a rat model of Parkinson’s disease. J Am Coll Nutr 26:341–349

    CAS  PubMed  Google Scholar 

  154. Benavente-Garcia O, Castillo J (2008) Update on uses and properties of Citrus flavonoids: new findings in anticancer, cardiovascular, and anti- inflammatory activity. J Agric Food Chem 56:6185–6205

    CAS  PubMed  Google Scholar 

  155. Londono-Londono J, Rodrigues de Lima V, Lara O, Gil A, Pasa TBC, Arango GJ, Pineda JRR (2009) Clean recovery of antioxidant flavonoids from citrus peel: optimizing an aqueous ultrasound-assisted extraction method. J Food Chem. doi:10.1016/j.foodchem.2009.05.075

    Google Scholar 

  156. Kuoryanagi M, Ishii JH, Kawahara N, Sugimoto H, Yamada H, Okihara K, Shirota O (2008) Flavonoid glycosides and limonoids from Citrus molasses. J Nat Med 62:107–111

    Google Scholar 

  157. Talon M, Gmitter FG (2008) Citrus genomics. Int J Plant Genomics Article ID 528361, doi:10.115/2008/528361

    Google Scholar 

  158. Seelenfreund D, Chiong M, Lobos S, Perez LM (1996) A full-length cDNA coding for phenylalanine ammonia-lyase from Citrus limon (Accession No.U43338) (PGR96-026). Plant Physiol 111:348

    Google Scholar 

  159. Deng ZN, Gentile A, La Malfa S, Domina F, Tribulato E, Messina A (2001) Identification of stress resistance genes by PCR-Select cDNA subtraction in Citrus. In Proceedings of the 5th congress of the European foundation for plant pathology I (Societa Italiana di Patologia Vegetale, ed.), pp 261–263

    Google Scholar 

  160. Gomi K, Yamamoto H, Akimitsu K (2002) Characterization of a lipoxygenase gene in rough lemon induced by Alternaria alternate. J Gen Plant Pathol 68:21–30

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the USDA (grants 98-35301-6514 and 2003-35318-13749) and NSF (grant MCB-0614260) for past and current support of their work on secondary product glycosyltransferases and flavonoid metabolism in C. paradisi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia A. McIntosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Owens, D.K., McIntosh, C.A. (2011). Biosynthesis and Function of Citrus Glycosylated Flavonoids. In: Gang, D. (eds) The Biological Activity of Phytochemicals. Recent Advances in Phytochemistry, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7299-6_6

Download citation

Publish with us

Policies and ethics