Skip to main content

Oxidative Folding: Coupling Conformational Folding and Disulfide Formation

  • Chapter
  • First Online:
Folding of Disulfide Proteins

Part of the book series: Protein Reviews ((PRON,volume 14))

Abstract

Determining how a string of amino acid residues folds into the ­biologically active protein conformation remains as one of the most important and challenging tasks in biology. Protein folding is usually a fast reaction in which transient intermediates in the folding pathway are short lived, highly dynamic, and very difficult to be trapped, isolated, and characterized. The technique of oxidative folding applied to study disulfide proteins overcomes some of these problems. During protein oxidative folding, the coupling between conformational folding and disulfide formation together with the possibility to selectively quench the progress of the oxidative reaction permits the isolation and further structural characterization of transient folding intermediates in atomic detail. With its unique chemistry and relatively slow kinetics of disulfide formation, the technique of oxidative folding has facilitated the detailed characterization of the folding pathways of an important number of disulfide-rich proteins. The results reveal a high degree of diversity of folding mechanisms, which are mainly manifested by the extent of heterogeneity and native-like structures of their intermediate ensembles. Overall, as we will discuss in this chapter, the study of disulfide-containing polypeptides has contributed significantly to our current knowledge on the molecular basis of protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

(des) species:

A folding intermediate lacking one disulfide bond

1S:

One-disulfide intermediates

2S:

Two-disulfide intermediates

3D structure:

Three-dimensional structure

3S:

Three-disulfide intermediates

BPTI:

Bovine pancreatic trypsin inhibitor

Cys–Cys:

Cystine

DTTox:

Oxidized dithiothreitol

DTTred :

Reduced dithiothreitol

EGF:

Epidermal growth factor

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H/D exchange:

Hydrogen to deuterium exchange

LCI:

Leech carboxypeptidase inhibitor

LDTI:

Leech-derived trypsin inhibitor

MCoTI-II:

Momordica cochinchinensis trypsin inhibitor II

MS:

Mass spectrometry

PDI:

Protein disulfide isomerase

RNase A:

Bovine pancreatic ribonuclease A

RP-HPLC:

Reversed phase high-performance liquid chromatography

S-:

Thiolate group

SH:

Thiol group

TAP:

Tick anticoagulant peptide

TCEP:

Tris(2-carboxyethyl)phosphine

TCI:

Tick carboxypeptidase inhibitor

References

  • Abkevich VI, Shakhnovich EI (2000) What can disulfide bonds tell us about protein energetics, function and folding: simulations and bioinformatics analysis. J Mol Biol 300:975–985

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1972) The formation and stabilization of protein structure. Biochem J 128:737–749

    PubMed  CAS  Google Scholar 

  • Arias-Moreno X, Arolas JL, Aviles FX, Sancho J, Ventura S (2008) Scrambled isomers as key intermediates in the oxidative folding of ligand binding module 5 of the low density lipoprotein receptor. J Biol Chem 283:13627–13637

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Bronsoms S, Lorenzo J, Aviles FX, Chang JY, Ventura S (2004) Role of kinetic intermediates in the folding of leech carboxypeptidase inhibitor. J Biol Chem 279:37261–37270

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, D’silva L, Popowicz GM, Aviles FX, Holak TA, Ventura S (2005) NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor. Structure 13:1193–1202

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Aviles FX, Chang JY, Ventura S (2006) Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 31:292–301

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Bronsoms S, Aviles FX, Ventura S, Sommerhoff CP (2008a) Oxidative folding of leech-derived tryptase inhibitor via native disulfide-bonded intermediates. Antioxid Redox Signal 10:77–85

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Pantoja-Uceda D, Ventura S, Blanco FJ, Aviles FX (2008b) The NMR structures of the major intermediates of the two-domain tick carboxypeptidase inhibitor reveal symmetry in its folding and unfolding pathways. J Biol Chem 283:27110–27120

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Castillo V, Bronsoms S, Aviles FX, Ventura S (2009) Designing out disulfide bonds of leech carboxypeptidase inhibitor: implications for its folding, stability and function. J Mol Biol 392:529–546

    Article  PubMed  CAS  Google Scholar 

  • Auerswald EA, Morenweiser R, Sommerhoff CP, Piechottka GP, Eckerskorn C, Gurtler LG, Fritz H (1994) Recombinant leech-derived tryptase inhibitor: construction, production, protein chemical characterization and inhibition of HIV-1 replication. Biol Chem Hoppe Seyler 375:695–703

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (1994) Finding intermediates in protein folding. Bioessays 16:207–210

    Article  PubMed  CAS  Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195

    Article  PubMed  CAS  Google Scholar 

  • Camacho CJ, Thirumalai D (1995) Modeling the role of disulfide bonds in protein folding: entropic barriers and pathways. Proteins 22:27–40

    Article  PubMed  CAS  Google Scholar 

  • Cemazar M, Joshi A, Daly NL, Mark AE, Craik DJ (2008) The structure of a two-disulfide ­intermediate assists in elucidating the oxidative folding pathway of a cyclic cystine knot ­protein. Structure 16:842–851

    Article  PubMed  CAS  Google Scholar 

  • Chang JY (1983) The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett 164:307–313

    Article  PubMed  CAS  Google Scholar 

  • Chang JY (1994) Controlling the speed of hirudin folding. Biochem J 300:643–650

    PubMed  CAS  Google Scholar 

  • Chang JY (1996) The disulfide folding pathway of tick anticoagulant peptide (TAP), a Kunitz-type inhibitor structurally homologous to BPTI. Biochemistry 35:11702–11709

    Article  PubMed  CAS  Google Scholar 

  • Chang JY (2004) Evidence for the underlying cause of diversity of the disulfide folding pathway. Biochemistry 43:4522–4529

    Article  PubMed  CAS  Google Scholar 

  • Chang JY (2008) Diversity of folding pathways and folding models of disulfide proteins. Antioxid Redox Signal 10:171–177

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Li L (2005) Divergent folding pathways of two homologous proteins, BPTI and tick anticoagulant peptide: compartmentalization of folding intermediates and identification of kinetic traps. Arch Biochem Biophys 437:85–95

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Schindler P, Chatrenet B (1995) The disulfide structures of scrambled hirudins. J Biol Chem 270:11992–11997

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Li L, Lai PH (2001) A major kinetic trap for the oxidative folding of human epidermal growth factor. J Biol Chem 276:4845–4852

    Article  PubMed  CAS  Google Scholar 

  • Chatrenet B, Chang JY (1992) The folding of hirudin adopts a mechanism of trial and error. J Biol Chem 267:3038–3043

    PubMed  CAS  Google Scholar 

  • Chatrenet B, Chang JY (1993) The disulfide folding pathway of hirudin elucidated by stop/go folding experiments. J Biol Chem 268:20988–20996

    PubMed  CAS  Google Scholar 

  • Creighton TE (1974) Renaturation of the reduced bovine pancreatic trypsin inhibitor. J Mol Biol 87:563–577

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1979) Electrophoretic analysis of the unfolding of proteins by urea. J Mol Biol 129:235–264

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1986) Disulfide bonds as probes of protein folding pathways. Methods Enzymol 131:83–106

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1988a) The protein folding problem. Science 240(267):344

    Google Scholar 

  • Creighton TE (1988b) Toward a better understanding of protein folding pathways. Proc Natl Acad Sci USA 85:5082–5086

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1990) Protein folding. Biochem J 270:1–16

    PubMed  CAS  Google Scholar 

  • Creighton TE (1997) Protein folding coupled to disulphide bond formation. Biol Chem 378:731–744

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE, Goldenberg DP (1984) Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J Mol Biol 179:497–526

    Article  PubMed  CAS  Google Scholar 

  • Dadlez M (1997) Hydrophobic interactions accelerate early stages of the folding of BPTI. Biochemistry 36:2788–2797

    Article  PubMed  CAS  Google Scholar 

  • Daggett V, Fersht A (2003) The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol 4:497–502

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Creighton TE (1993) Dissecting the disulphide-coupled folding pathway of bovine pancreatic trypsin inhibitor. Forming the first disulphide bonds in analogues of the reduced protein. J Mol Biol 232:873–896

    Article  PubMed  CAS  Google Scholar 

  • Darby N, Creighton TE (1997) Probing protein folding and stability using disulfide bonds. Mol Biotechnol 7:57–77

    Article  PubMed  CAS  Google Scholar 

  • Di Marco S, Priestle JP (1997) Structure of the complex of leech-derived tryptase inhibitor (LDTI) with trypsin and modeling of the LDTI-tryptase system. Structure 5:1465–1474

    Article  PubMed  Google Scholar 

  • Dill KA, Ozkan SB, Weikl TR, Chodera JD, Voelz VA (2007) The protein folding problem: when will it be solved? Curr Opin Struct Biol 17:342–346

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM, Evans PA (1988) Protein structure. Trapping folding intermediates. Nature 335:666–667

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    Article  PubMed  CAS  Google Scholar 

  • Fetrow JS, Giammona A, Kolinski A, Skolnick J (2002) The protein folding problem: a biophysical enigma. Curr Pharm Biotechnol 3:329–347

    Article  PubMed  CAS  Google Scholar 

  • Folkers PJ, Clore GM, Driscoll PC, Dodt J, Kohler S, Gronenborn AM (1989) Solution structure of recombinant hirudin and the Lys-47-Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry 28:2601–2617

    Article  PubMed  CAS  Google Scholar 

  • Gruebele M (1999) The fast protein folding problem. Annu Rev Phys Chem 50:485–516

    Article  PubMed  CAS  Google Scholar 

  • Grutter MG, Priestle JP, Rahuel J, Grossenbacher H, Bode W, Hofsteenge J, Stone SR (1990) Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 9:2361–2365

    PubMed  CAS  Google Scholar 

  • Guerois R, Serrano L (2000) The SH3-fold family: experimental evidence and prediction of variations in the folding pathways. J Mol Biol 304:967–982

    Article  PubMed  CAS  Google Scholar 

  • Hogg PJ (2003) Disulfide bonds as switches for protein function. Trends Biochem Sci 28:210–214

    Article  PubMed  CAS  Google Scholar 

  • Hogg PJ (2009) Contribution of allosteric disulfide bonds to regulation of hemostasis. J Thromb Haemost 7(Suppl 1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Honig B, Ray A, Levinthal C (1976) Conformational flexibility and protein folding: rigid structural fragments connected by flexible joints in subtilisin BPN. Proc Natl Acad Sci USA 73:1974–1978

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, Weaver DL (1994) Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci 3:650–668

    Article  PubMed  CAS  Google Scholar 

  • Kibria FM, Lees WJ (2008) Balancing conformational and oxidative kinetic traps during the folding of bovine pancreatic trypsin inhibitor (BPTI) with glutathione and glutathione disulfide. J Am Chem Soc 130:796–797

    Article  PubMed  CAS  Google Scholar 

  • Kim PS, Baldwin RL (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    Article  PubMed  CAS  Google Scholar 

  • Kortemme T, Hollecker M, Kemmink J, Creighton TE (1996) Comparison of the (30–51, 14–38) two-disulphide folding intermediates of the homologous proteins dendrotoxin K and bovine pancreatic trypsin inhibitor by two-dimensional 1H nuclear magnetic resonance. J Mol Biol 257:188–198

    Article  PubMed  CAS  Google Scholar 

  • Laity JH, Lester CC, Shimotakahara S, Zimmerman DE, Montelione GT, Scheraga HA (1997) Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 36:12683–12699

    Article  PubMed  CAS  Google Scholar 

  • Mamathambika BS, Bardwell JC (2008) Disulfide-linked protein folding pathways. Annu Rev Cell Dev Biol 24:211–235

    Article  PubMed  CAS  Google Scholar 

  • Margittai E, Csala M, Mandl J, Banhegyi G (2009) Participation of low molecular weight electron carriers in oxidative protein folding. Int J Mol Sci 10:1346–1359

    Article  PubMed  CAS  Google Scholar 

  • Montelione GT, Wuthrich K, Burgess AW, Nice EC, Wagner G, Gibson KD, Scheraga HA (1992) Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry 31:236–249

    Article  PubMed  CAS  Google Scholar 

  • Muhlhahn P, Czisch M, Morenweiser R, Habermann B, Engh RA, Sommerhoff CP, Auerswald EA, Holak TA (1994) Structure of leech derived tryptase inhibitor (LDTI-C) in solution. FEBS Lett 355:290–296

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Welker E, Scheraga HA (2003a) Native conformational tendencies in unfolded polypeptides: development of a novel method to assess native conformational tendencies in the reduced forms of multiple disulfide-bonded proteins. J Am Chem Soc 125:2036–2037

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Welker E, Wanjalla C, Xu G, Scheraga HA (2003b) Shifting the competition between the intramolecular reshuffling reaction and the direct oxidation reaction during the oxidative folding of kinetically trapped disulfide-insecure intermediates. Biochemistry 42:10783–10789

    Article  PubMed  CAS  Google Scholar 

  • Nishimura C, Lietzow MA, Dyson HJ, Wright PE (2005) Sequence determinants of a protein folding pathway. J Mol Biol 351:383–392

    Article  PubMed  CAS  Google Scholar 

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    Article  PubMed  CAS  Google Scholar 

  • Pantoja-Uceda D, Arolas JL, Aviles FX, Santoro J, Ventura S, Sommerhoff CP (2009) Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor. J Biol Chem 284:35612–35620

    Article  PubMed  CAS  Google Scholar 

  • Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 277:985–994

    Article  PubMed  CAS  Google Scholar 

  • Poland DC, Scheraga HA (1965) Comparison of theories of the helix-coil transition in polypeptides. J Chem Phys 43:2071–2074

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn OB (1991) How does protein synthesis give rise to the 3D-structure? FEBS Lett 285:176–181

    Article  PubMed  CAS  Google Scholar 

  • Rydel TJ, Ravichandran KG, Tulinsky A, Bode W, Huber R, Roitsch C, Fenton JW II (1990) The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 249:277–280

    Article  PubMed  CAS  Google Scholar 

  • Saaranen MJ, Karala AR, Lappi AK, Ruddock LW (2010) The role of dehydroascorbate in disulfide bond formation. Antioxid Redox Signal 12:15–25

    Article  PubMed  CAS  Google Scholar 

  • Sanchez R, Pieper U, Melo F, Eswar N, Marti-Renom MA, Madhusudhan MS, Mirkovic N, Sali A (2000) Protein structure modeling for structural genomics. Nat Struct Biol 7(Suppl):986–990

    Article  PubMed  CAS  Google Scholar 

  • Scheraga HA, Konishi Y, Rothwarf DM, Mui PW (1987) Toward an understanding of the folding of ribonuclease A. Proc Natl Acad Sci USA 84:5740–5744

    Article  PubMed  CAS  Google Scholar 

  • Shimotakahara S, Rios CB, Laity JH, Zimmerman DE, Scheraga HA, Montelione GT (1997) NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Biochemistry 36:6915–6929

    Article  PubMed  CAS  Google Scholar 

  • Sommerhoff CP, Sollner C, Mentele R, Piechottka GP, Auerswald EA, Fritz H (1994) A Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe Seyler 375:685–694

    Article  PubMed  CAS  Google Scholar 

  • Stubbs MT, Morenweiser R, Sturzebecher J, Bauer M, Bode W, Huber R, Piechottka GP, Matschiner G, Sommerhoff CP, Fritz H, Auerswald EA (1997) The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem 272:19931–19937

    Article  PubMed  CAS  Google Scholar 

  • Ventura S (2008) Oxidative protein folding: from the test tube to in vivo insights. Antioxid Redox Signal 10:51–53

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000a) Disulfide bonds and protein folding. Biochemistry 39:7032

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000b) Disulfide bonds and protein folding. Biochemistry 39:4207–4216

    Article  PubMed  CAS  Google Scholar 

  • Wedemeyer WJ, Xu X, Welker E, Scheraga HA (2002) Conformational propensities of protein folding intermediates: distribution of species in the 1S, 2S, and 3S ensembles of the [C40A, C95A] mutant of bovine pancreatic ribonuclease A. Biochemistry 41:1483–1491

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS (1995) All roads lead to Rome? The multiple pathways of protein folding. Chem Biol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1992) Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 89:9900–9904

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Narayan M, Wedemeyer WJ, Scheraga HA (2001a) Structural determinants of oxidative folding in proteins. Proc Natl Acad Sci 98:2312–2316

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Wedemeyer WJ, Narayan M, Scheraga HA (2001b) Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. Biochemistry 40:9059–9064

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Hathaway L, Scheraga HA (2004) A new method for rapid characterization of the folding pathways of multidisulfide-containing proteins. J Am Chem Soc 126:3720–3721

    Article  PubMed  CAS  Google Scholar 

  • Wouters MA, Fan SW, Haworth NL (2010) Disulfides as redox switches: from molecular mechanisms to functional significance. Antioxid Redox Signal 12:53–91

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Yang Y, Watson JT (1998) Trapping of intermediates during the refolding of recombinant human epidermal growth factor (hEGF) by cyanylation, and subsequent structural elucidation by mass spectrometry. Protein Sci 7:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Zavodszky M, Chen CW, Huang JK, Zolkiewski M, Wen L, Krishnamoorthi R (2001) Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V. Protein Sci 10:149–160

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ventura, S., Chang, R.J.Y. (2011). Oxidative Folding: Coupling Conformational Folding and Disulfide Formation. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_1

Download citation

Publish with us

Policies and ethics