Skip to main content

Boundary Value Estimation of the Range of an Analytic function

  • Chapter
  • First Online:
Selected Works of Donald L. Burkholder

Part of the book series: Selected Works in Probability and Statistics ((SWPS))

  • 1697 Accesses

Abstract

Let S be a set of complex numbers and G a function analytic in D = {∣z∣ < 1}. Denote the nontangential limit of G at e, if it exists, by G(e) and write G(e) ∈ S a.e. to mean that, for almost all θ, the limit does exist and belongs to S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. L. Burkholder, Exit times of Brownian motion, harmonie memorization, and Hardy spaces. Advances in Math. 26 (1977), 182-205.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. L. Burkholder, Weak inequalities for exit times and analytic functions.Proceedings of the Probability Semester (Spring, 1976), Stefan Banach International Mathematical Center, Warsaw, to appear.

    Google Scholar 

  3. D. L. Burkholder and R. F. Gundy, Distribution function inequalities for the area integral. Studia Math. 44 (1972), 527-544.

    MATH  MathSciNet  Google Scholar 

  4. D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the classHp. Trans. Amer. Math. Soc. 157 (1971), 137-153.

    MATH  MathSciNet  Google Scholar 

  5. C. Constantinescu and A. Cornea, Potential theory on harmonic spaces. Springer-Verlag, Berlin, 1972.

    MATH  Google Scholar 

  6. J. L. Doob, Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. 77 (1954), 86-121.

    MATH  MathSciNet  Google Scholar 

  7. G. M. Goluzin, Geometric theory of functions of a complex variable. American Mathematical Society, Providence, 1969.

    MATH  Google Scholar 

  8. L. J. Hansen, Boundary values and mapping properties ofHp functions. Math. Z. 128 (1972), 189-194.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications. Acta Math. 54 (1930), 81-116.

    Article  MathSciNet  Google Scholar 

  10. M. Heins, Selected topics in the classical theory of functions of a complex variable. Holt, Rinehart and Winston New York, 1962.

    Google Scholar 

  11. L. L. Helms, Irmmduction to potential theory. Wiley-Interscience, New York, 1969.

    Google Scholar 

  12. J. Neuwirth and D. J. Newman, PositiveH1/2 functions are constants. Proc. Amer. Math. Soc. 18 (1967), 958.

    MATH  MathSciNet  Google Scholar 

  13. D. E. Tepper and J. H. Neuwirth, A covering property forHp functions.Proceedings of the S.U.N.Y. Brockport Conference on Complex Analysis, edited by Sanford S. Miller, Marcel Dekker, New York, 1978.

    Google Scholar 

  14. A. Zygmund, Trigonometric seriesI, II. Cambridge University Press, Cambridge, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burgess Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davis, B., Song, R. (2011). Boundary Value Estimation of the Range of an Analytic function. In: Davis, B., Song, R. (eds) Selected Works of Donald L. Burkholder. Selected Works in Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7245-3_19

Download citation

Publish with us

Policies and ethics