Skip to main content

VEGFS, FGFS, and PDGF Coordinate Embryonic Coronary Vascularization

  • Chapter
  • First Online:
Genes and Cardiovascular Function

Abstract

The formation of the coronary vasculature during embryonic and fetal life requires many signaling events that involve transcription factors, growth factors, and other molecules. Vascular precursor cells migrate to the heart from the proepicardium, and then differentiate and assemble to form the coronary vasculature. Several growth factors are required for coronary vasculogenesis, angiogenesis, and arteriogenesis, as documented in this chapter, based on both in vitro and in vivo studies in quail, rat, and mouse. Our data reveal that formation of the initial vascular, endothelial-lined channels is regulated by multiple VEGFs (especially VEGF-B), multiple FGFs, and angiopoietins. TGF-β inhibits at least two splice variants of VEGF, thus its expression attenuates endothelial cell proliferation during arteriogenesis. Our findings also document: (1) VEGF-B and VEGFR-1 as the key players in the formation of coronary ostia and stems, and (2) FGF-2 and PDGF as important regulators of coronary arterial formation. These conclusions are based on experiments in which these growth factors were inhibited by injecting neutralizing antibodies into the vitelline vein of quail embryos. Finally, we tested the hypothesis that embryonic mesenchymal stem cells (EMSCs) facilitate coronary tubulogenesis by adding these cells to mouse embryonic heart explants. These experiments revealed an increased tubulogenesis associated with a 22-fold enhancement of stromal-derived factor-1 (SDF-1), most of which was a product of the EMSCs. In conclusion, prenatal coronary vessel development requires temporally and spatially coordinated signaling processes, multiple growth factors, and the influence of progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomanek RJ. Formation of the coronary vasculature during development. Angiogenesis. 2005;8:273–84.

    Article  PubMed  Google Scholar 

  2. Tomanek RJ, Lotun K, Clark EB, et al. VEGF and bFGF stimulate myocardial vascularization in embryonic chick. Am J Physiol. 1998;274:H1620–6.

    PubMed  CAS  Google Scholar 

  3. Yue X, Tomanek RJ. Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Dev Dyn. 1999;216:28–36.

    Article  PubMed  CAS  Google Scholar 

  4. Yue X, Tomanek RJ. Effects of VEGF(165) and VEGF(121) on vasculogenesis and angiogenesis in cultured embryonic quail hearts. Am J Physiol Heart Circ Physiol. 2001;280:H2240–7.

    PubMed  CAS  Google Scholar 

  5. Tomanek RJ, Zheng W, Peters KG, et al. Multiple growth factors regulate coronary embryonic vasculogenesis. Dev Dyn. 2001;221:265–73.

    Article  PubMed  CAS  Google Scholar 

  6. Tomanek RJ, Holifield JS, Reiter RS, et al. Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn. 2002;225:233–40.

    Article  PubMed  CAS  Google Scholar 

  7. Holifield JS, Arlen AM, Runyan RB, et al. TGF-beta(1), -beta(2) and -beta(3) cooperate to facilitate tubulogenesis in the explanted quail heart. J Vasc Res. 2004;41:491–8.

    Article  PubMed  CAS  Google Scholar 

  8. Nanka O, Valasek P, Dvorakova M, et al. Experimental hypoxia and embryonic angiogenesis. Dev Dyn. 2006;235:723–33.

    Article  PubMed  CAS  Google Scholar 

  9. Joseph-Silverstein J, Consigli SA, Lyser KM, et al. Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol. 1989;108:2459–66.

    Article  PubMed  CAS  Google Scholar 

  10. Spirito P, Fu YM, Yu ZX, et al. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991;84:322–32.

    PubMed  CAS  Google Scholar 

  11. Tomanek RJ, Haung L, Suvarna PR, et al. Coronary vascularization during development in the rat and its relationship to basic fibroblast growth factor. Cardiovasc Res. 1996;31:E116–26.

    PubMed  CAS  Google Scholar 

  12. Lagercrantz J, Farnebo F, Larsson C, et al. A comparative study of the expression patterns for vegf, vegf-b/vrf and vegf-c in the developing and adult mouse. Biochim Biophys Acta. 1998;1398:157–63.

    PubMed  CAS  Google Scholar 

  13. Ikuta T, Ariga H, Matsumoto KI. Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts. Biol Pharm Bull. 2001;24:1320–3.

    Article  PubMed  CAS  Google Scholar 

  14. Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA. 1998;95:548–53.

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Pomares JM, Macias D, Garcia-Garrido L, et al. The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol. 1998;200:57–68.

    Article  PubMed  CAS  Google Scholar 

  16. Pepper M, Mandriota S, Jeltsch M, et al. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol. 1998;177:439–52.

    Article  PubMed  CAS  Google Scholar 

  17. Tomanek RJ, Ishii Y, Holifield JS, et al. VEGF family members regulate myocardial tubulogenesis and coronary artery formation in the embryo. Circ Res. 2006;98:947–53.

    Article  PubMed  CAS  Google Scholar 

  18. Lavine KJ, White AC, Park C, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20:1651–66.

    Article  PubMed  CAS  Google Scholar 

  19. Lee SH, Schloss DJ, Swain JL. Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem. 2000;275:33679–87.

    Article  PubMed  CAS  Google Scholar 

  20. Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol. 2009;328:148–59.

    Article  PubMed  CAS  Google Scholar 

  21. Tomanek R, Christensen L, Simons M, et al. Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Dev Dyn. In press.

    Google Scholar 

  22. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, et al. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol Berl. 1989;180:437–41.

    Article  PubMed  CAS  Google Scholar 

  23. Poelmann RE, Gittenberger-de Groot AC, Mentink MM, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559–68.

    PubMed  CAS  Google Scholar 

  24. Waldo KL, Willner W, Kirby ML. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat. 1990;188:109–20.

    Article  PubMed  CAS  Google Scholar 

  25. Ando K, Nakajima Y, Yamagishi T, et al. Development of proximal coronary arteries in quail embryonic heart: multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circ Res. 2004;94:346–52.

    Article  PubMed  CAS  Google Scholar 

  26. Velkey JM, Bernanke DH. Apoptosis during coronary artery orifice development in the chick embryo. Anat Rec. 2001;262:310–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Tomanek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tomanek, R.J., Christensen, L.P. (2011). VEGFS, FGFS, and PDGF Coordinate Embryonic Coronary Vascularization. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics