Skip to main content

Genetic Background of Myocardial Infarction

  • Chapter
  • First Online:
Genes and Cardiovascular Function
  • 598 Accesses

Abstract

Myocardial infarction (MI) is a common disease whose pathogenesis includes genetic factors, and it is among the leading causes of death. In 2000, we started a genome-wide association study (GWAS) for MI using nearly 90,000 gene-based single-nucleotide polymorphisms (SNPs), and identified lymphotoxin-a (LTA) conferring risk of MI in Japanese population. This was the first GWAS that identified a disease susceptibility gene in the world. Moreover, through examining the LTA cascade by combination of biological and genetic analyses, we have identified additional MI-susceptible genes, LGALS2, PSMA6, and BRAP, so far. We present here our recent work focused on identification and functional analyses of genes that confer risk of MI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breslow JW. Cardiovascular disease burden increases, NIH funding decreases. Nat Med. 1997;3:600–1.

    Article  PubMed  CAS  Google Scholar 

  2. Braunwald E. Shattuck lecture – cardiovascular medicine at the turn of the millennium: triumphs, concerns and opportunities. N Engl J Med. 1997;337:1360–9.

    Article  PubMed  CAS  Google Scholar 

  3. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  4. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.

    PubMed  CAS  Google Scholar 

  5. Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  6. Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet. 2004;5:189–218.

    Article  PubMed  CAS  Google Scholar 

  7. Marenberg ME, Rish N, Berkman LF, et al. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041–6.

    Article  PubMed  CAS  Google Scholar 

  8. Lander ES. The new genomics: global views of biology. Science. 1996;274:536–9.

    Article  PubMed  CAS  Google Scholar 

  9. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–7.

    Article  PubMed  CAS  Google Scholar 

  10. Collins FS, Guyer MS, Charkravarti A. Variations on a theme: cataloging human DNA sequence variation. Science. 1997;278:1580–1.

    Article  PubMed  CAS  Google Scholar 

  11. Haga H, Yamada R, Ohnishi Y, et al. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. J Hum Genet. 2002;47:605–10.

    Article  PubMed  CAS  Google Scholar 

  12. Ohnishi Y, Tanaka T, Ozaki K, et al. A high-throughput SNP typing system for genome-wide association studies. J Hum Genet. 2001;46:471–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ozaki K, Ohnishi Y, Iida A, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002;32:650–4.

    Article  PubMed  CAS  Google Scholar 

  14. Ishii N, Ozaki K, Sato H, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087–99.

    Article  PubMed  CAS  Google Scholar 

  15. Ebana Y, Ozaki K, Sato H, et al. A functional SNP in ITIH3 is associated with susceptibility to myocardial infarction. J Hum Genet. 2007;52:220–9.

    Article  PubMed  CAS  Google Scholar 

  16. Ozaki K, Inoue K, Sato H, et al. Functional variation in LGALS2 confers risk of myocardial infarction and regulates lymphotoxin-alpha secretion in vitro. Nature. 2004;429:72–5.

    Article  PubMed  CAS  Google Scholar 

  17. Ozaki K, Sato H, Iida A, et al. A functional SNP in PSMA6 confers risk of myocardial infarction in the Japanese population. Nat Genet. 2006;38:921–5.

    Article  PubMed  CAS  Google Scholar 

  18. Ozaki K, Sato H, Inoue K, et al. SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat Genet. 2009;1:329–33.

    Article  Google Scholar 

  19. PROCARDIS Consortium. A trio family study showing association of the lymphotoxin-alpha N26 (804A) allele with coronary artery disease. Eur J Hum Genet. 2004;12:770–4.

    Article  Google Scholar 

  20. Ozaki K, Tanaka T. Genome-wide association study to identify SNPs conferring risk of myocardial infarction and their functional analyses. Cell Mol Life Sci. 2005;62:1804–13.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka T, Ozaki K. Inflammation as a risk factor for myocardial infarction. J Hum Genet. 2006;51:595–604.

    Article  PubMed  CAS  Google Scholar 

  22. Beinke S, Ley SC. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem J. 2004;382:393–409.

    Article  PubMed  CAS  Google Scholar 

  23. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–47.

    Article  PubMed  CAS  Google Scholar 

  24. International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437:1299–320.

    Article  Google Scholar 

  25. Li S, Ku CY, Farmer AA, et al. Identification of a novel cytoplasmic protein that specifically binds to nuclear localization signal motifs. J Biol Chem. 1998;273:6183–9.

    Article  PubMed  CAS  Google Scholar 

  26. Matheny SA, Chen C, Kortum RL, et al. Ras regulates assembly of mitogenic signaling complexes through the effector protein IMP. Nature. 2004;427:256–60.

    Article  PubMed  CAS  Google Scholar 

  27. Ory S, Morrison DK. Signal transduction: implications for Ras-dependent ERK signaling. Curr Biol. 2004;14:R277–8.

    Article  PubMed  CAS  Google Scholar 

  28. O’Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat Rev Drug Discov. 2006;5:549–63.

    Article  PubMed  Google Scholar 

  29. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signaling. Semin Immunol. 2000;12:85–98.

    Article  PubMed  CAS  Google Scholar 

  30. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.

    Article  PubMed  CAS  Google Scholar 

  31. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on chromosome 9 associated with coronary artery disease. Science. 2007;316:1488–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ozaki, K., Tanaka, T. (2011). Genetic Background of Myocardial Infarction. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics