Skip to main content

Simulation and Interpretation of Images

  • Chapter
  • First Online:
Scanning Transmission Electron Microscopy

Abstract

In this chapter we discuss the simulation and interpretation of both Z-contrast and electron energy-loss spectroscopy images in scanning transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The “reduced wave function” is obtained from the full wave function by factoring out a fast oscillating phase factor of \(\exp(2\pi {{\textrm i}} k_0 z)\). This is often referred to as the modulated plane wave ansatz (van Dyck 1985).

  2. 2.

    This expression is strictly only correct in the absence of absorption. In the presence of absorption \(C_{\bf g}^{i*}\) should be replaced by the appropriate element in the inverse matrix of eigenvalues (Allen and Rossouw 1989, Findlay 2005).

  3. 3.

    The phase-linked plane wave approach could equally well be applied in the multislice method, but, following Kirkland et al. (1987), all multislice treatments of STEM seem to deal with the entire wave function.

  4. 4.

    We must note that the model presented here for thermal absorption and HAADF imaging follows from the Hall and Hirsch description (1965), the derivation of which involves an analytic application of the frozen phonon concept, and in light of this the agreement between the models is not surprising. But as effectively the same potential has been derived by other means which do explicitly account for the inelastic transition (Weickenmeier and Kohl 1998), the assertion is not trivial.

  5. 5.

    Core loss on an atom-by-atom basis is justified because the initial bound state is meaningfully associated with a single atom, and so distinguishable from excitation of other atoms (Maslen 1987, Saldin and Rez 1987). Phonon excitation on an atom-by-atom basis is less obviously justified since it invokes an Einstein model and so neglects any correlated motion between the different atoms. For HAADF imaging, a detailed comparison was carried out by Muller et al. (2001) which showed that these two models give essentially the same predictions. We use that basis to justify the assumption.

  6. 6.

    Or, loosely speaking, cross-section expression since for high-energy electron scattering the two are related by constant factors.

  7. 7.

    To make connection with previous work by the authors and collaborators (Allen and Josefsson 1995, Allen et al. 2003, 2006, Findlay et al. 2005, Oxley et al. 2005, 2007, Rossouw et al. 2003), we note that Eq. (15) has generally been evaluated in reciprocal space. Defining inelastic scattering matrix elements \({\boldsymbol{\mu}}_{{\bf H},{\bf G}}\) via

    $$\frac{2\pi}{hv} W({\bf R},{\bf R}') = \frac{1}{A} \sum_{{\bf H},{\bf G}} {\boldsymbol{\mu}}_{{\bf H},{\bf G}} \exp\left(2\pi i{\bf H}\cdot{\bf R}\right) \exp\left(-2\pi i{\bf G}\cdot{\bf R}'\right)$$

    and substituting into Eq. (15), the nonlocal imaging expression may be rewritten as

    $$I({\bf R}_0) = \frac{1}{A} \sum_{{\bf H},{\bf G}} {\boldsymbol{\mu}}_{{\bf H},{\bf G}} \int^t_0 {\boldsymbol{\psi}}^*_0({\bf H},z,{\bf R}_0) {\boldsymbol{\psi}}_0({\bf G},z,{\bf R}_0) {\mathrm{d}} z \;.$$

    The area factor A is an artefact of the assumed normalization of the wave functions, which varies widely in the literature. Here we have assumed that the integral of the intensity of the wave function over a 2D plane is dimensionless, in both real and reciprocal space forms. This contrasts with the Bloch wave formulation, where the wave function itself is often taken to be dimensionless.

    The inelastic scattering matrix elements \({\boldsymbol{\mu}}_{{\bf H},{\bf G}}\) are closely related to the mixed dynamic form factor (Kohl and Rose 1985, Schattschneider et al. 2000), the difference being that the former further incorporates information about the detector geometry.

  8. 8.

    An extended version of this investigation may be found in Allen et al. (2008).

  9. 9.

    The 10 mrad case has the same shape as the test case of Oxley et al. (2005). However, since the approach based on Eq. (11) does not lend itself to integration over an energy window, a fixed energy loss of 10 eV above the threshold was chosen. This makes the units here slightly different to those in Oxley et al. (2005) since they are based on Eq. (15) where the integration over a 40 eV energy window was carried out over the effective scattering potential.

  10. 10.

    This is reminiscent of a very similar problem in atomic-resolution images in CTEM, referred to as the “Stobbs factor” problem (Howie 2004, Hÿtch 1994). If the cause were to lie in some insufficiently appreciated aspect of, say, the thermal scattering, the problems in CTEM and STEM could be connected. However, though the definitive evidence has not yet been published, it seems likely that the cause of the discrepancy in CTEM is due to the modulation transfer function of the detector (Thust 2008). If so, the problems are independent, the detector modulation transfer function having no direct analogue in the STEM set-up.

  11. 11.

    The outer detector semiangle for the calculations was ∼240 mrad, which is likely smaller than the experimental value. However, increasing the outer angle in the calculations to 400 mrad in the Bloch wave model (the upper experimental limit given by the detector dimensions) did not significantly affect the contrast. Sampling issues prohibit frozen phonon simulations being readily attempted with the larger detector range. Hence the use of the smaller outer angle, given the Bloch wave reassurance that the difference will be small.

  12. 12.

    It has recently been emphasized that the fractional occupancy method cannot fairly be applied in the frozen phonon model (Carlino and Grillo 2005). However, in the cross-section expression model it presents no serious inconsistencies, particularly when investigating only qualitative features rather than quantitative signals.

  13. 13.

    Calculations predict that the contribution of electrons that excite L 1 ionizations is over an order of magnitude smaller than those that excite L 2,3 ionizations, and so the former are neglected.

  14. 14.

    Confocal electron microscopy at lower resolutions having been previously established (Frigo et al. 2002).

References

  • L.J. Allen, New directions for chemical maps. Nat. Nanotechnol. 3, 255–256 (2008)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook, Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys. Rev. Lett. 91, 105503 (2003)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, M.P. Oxley, C. Witte, N.J. Zaluzec, Modelling high-resolution electron microscopy based on core-loss spectroscopy. Ultramicroscopy 106, 1001–1011 (2006)

    CAS  Google Scholar 

  • L.J. Allen, A.J. D’Alfonso, S.D. Findlay, M.P. Oxley, M. Bosman, V.J. Keast, E.C. Cosgriff, G. Behan, P.D. Nellist, A.I. Kirkland, Theoretical interpretation of electron energy-loss spectroscopic images. Am. Inst. Phys. Conf. Proc. 999, 32–46 (2008)

    CAS  Google Scholar 

  • L.J. Allen, T.W. Josefsson, Inelastic scattering of fast electrons by crystals. Phys. Rev. B 52, 3184–3198 (1995)

    CAS  Google Scholar 

  • L.J. Allen, C.J. Rossouw, Effects of thermal diffuse scattering and surface tilt on diffraction and channeling of fast electrons in CdTe. Phys. Rev. B 39, 8313–8321 (1989)

    CAS  Google Scholar 

  • A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)

    CAS  Google Scholar 

  • G.R. Anstis: The influence of atomic vibrations on the imaging properties of atomic focusers. J. Microsc. 194, 105–111 (1999)

    CAS  Google Scholar 

  • G.R. Anstis, S.C. Anderson, C.R. Birkeland, D.J.H. Cockayne, Computer simulation methods for the analysis of high-angle annular dark-field (HAADF) images of Al x Ga1−x As at high resolution. Unpublished proceedings, 15th Pfefferkorn Conference, Silver Bay, New York, 1996

    Google Scholar 

  • G.R. Anstis, D.Q. Cai, D.J.H. Cockayne, Limitations on the s-state approach to the interpretation of sub-angstrom resolution electron microscope images and microanalysis. Ultramicroscopy 94, 309–327 (2003)

    CAS  Google Scholar 

  • I. Arslan, A. Bleloch, E.A. Stach, N.D. Browning, Atomic and electronic structure of mixed and partial dislocations in GaN. Phys. Rev. Lett. 94, 025504 (2005)

    Google Scholar 

  • I. Arslan, T.J.V. Yates, N.D. Browning, P.A. Midgley, Embedded nanostructures revealed in three dimensions. Science 309, 2195 (2005)

    CAS  Google Scholar 

  • P.E. Batson, Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)

    CAS  Google Scholar 

  • P.E. Batson, Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106, 1104–1114 (2006)

    CAS  Google Scholar 

  • P.E. Batson, N. Dellby, O.L. Krivanek, Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)

    CAS  Google Scholar 

  • D.M. Bird: Theory of zone axis electron diffraction. J. Electron Microsc. Tech. 13, 77–97 (1989)

    CAS  Google Scholar 

  • A. Bleloch, U. Falke, M. Falke, High spatial resolution electron energy loss spectroscopy and imaging in an aberration corrected STEM. Microsc. Microanal. 9(Suppl. 3), 40–41 (2003)

    Google Scholar 

  • A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration corrected scanning transmission electron microscope. P. Natl. Acad. Sci. 103, 3044–3048 (2006)

    CAS  Google Scholar 

  • M. Bosman, V.J. Keast, Optimizing EELS acquisition. Ultramicroscopy 108, 837–846 (2008)

    CAS  Google Scholar 

  • M. Bosman, V.J. Keast, J.L. García-Muñoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)

    CAS  Google Scholar 

  • M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast, Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006)

    CAS  Google Scholar 

  • N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993), Corrigendum 444, 235 (2006)

    CAS  Google Scholar 

  • B.F. Buxton, J.E. Loveluck, J.W. Steeds, Bloch waves and their corresponding atomic and molecular orbitals in high energy electron diffraction. Philos. Mag. A 38, 259–278 (1978)

    CAS  Google Scholar 

  • E. Carlino, V. Grillo, Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments. Phys. Rev. B 71, 235303 (2005)

    Google Scholar 

  • D. Cherns, A. Howie, M.H. Jacobs, Characteristic X-ray production in thin crystals. Z. Naturforsch. A 28, 565–571 (1973)

    CAS  Google Scholar 

  • W. Coene, D. Van Dyck, Inelastic scattering of high-energy electrons in real space. Ultramicroscopy 33, 261–267 (1990)

    Google Scholar 

  • W. Coene, D. Van Dyck, M. Op de Beeck, J. Van Landuyt, Computational comparisons between the conventional multislice method and the third order multislice method for calculating high-energy electron diffraction and imaging. Ultramicroscopy 69, 219–240 (1997)

    Google Scholar 

  • E.C. Cosgriff, P.D. Nellist, A Bloch wave analysis of optical sectioning in aberrationcorrected STEM. Ultramicroscopy 107, 626–634 (2007)

    CAS  Google Scholar 

  • E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook, The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005)

    CAS  Google Scholar 

  • J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619 (1957)

    CAS  Google Scholar 

  • M.D. Croitoru, D. Van Dyck, S. Van Aert, S. Bals, J. Verbeeck, An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images. Ultramicroscopy 106, 933940 (2006)

    Google Scholar 

  • A.J. D’Alfonso, S.D. Findlay, M.P. Oxley, S.J. Pennycook, K. van Benthem, L.J. Allen, Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 17–28 (2007)

    Google Scholar 

  • C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electronic excitations. Ultramicroscopy 60, 49–70 (1995)

    CAS  Google Scholar 

  • C. Dinges, H. Rose, Simulation of transmission and scanning transmission electron microscopic images considering elastic and thermal diffuse scattering. Scanning Microsc. 11, 277–286 (1997)

    Google Scholar 

  • K. Dörr, Ferromagnetic manganites: spin-polarized conduction versus competing interactions. J. Phys. D 39, R125–R150 (2006)

    Google Scholar 

  • S.L. Dudarev, L.M. Peng, M.J. Whelan, Correlations in space and time and dynamical diffraction of high-energy electrons by crystals. Phys. Rev. B 48, 13408–13429 (1993)

    CAS  Google Scholar 

  • C. Dwyer, Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141–151 (2005)

    CAS  Google Scholar 

  • C. Dwyer, J. Etheridge, Scattering of A-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)

    CAS  Google Scholar 

  • C. Dwyer, S.D. Findlay, L.J. Allen, Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys. Rev. B 77, 184107 (2008)

    Google Scholar 

  • R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, 2nd edn. (Plenum Press, New York, NY, 1996)

    Google Scholar 

  • U. Falke, A. Bleloch, M. Falke, Atomic structure of a (2×1) reconstructed NiSi2/Si(001) interface. Phys. Rev. Lett. 92, 116103 (2004)

    Google Scholar 

  • S.D. Findlay, in Theoretical aspects of scanning transmission electron microscopy. Ph.D. thesis, The University of Melbourne, Melbourne, 2005

    Google Scholar 

  • S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)

    CAS  Google Scholar 

  • S.D. Findlay, M.P. Oxley, L.J. Allen, Modelling atomic-resolution scanning transmission electron microscopy images. Microsc. Microanal. 14, 48–59 (2008)

    CAS  Google Scholar 

  • S.D. Findlay, M.P. Oxley, S.J. Pennycook, L.J. Allen, Modelling imaging based on coreloss spectroscopy in scanning transmission electron microscopy. Ultramicroscopy 104, 126–140 (2005)

    CAS  Google Scholar 

  • L. Fitting, S. Thiel, A. Schmehl, J. Mannhart, D.A. Muller, Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. Ultramicroscopy 106, 1053–1061 (2006)

    CAS  Google Scholar 

  • S.P. Frigo, Z.H. Levine, N.J. Zaluzec, Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl. Phys. Lett. 81, 2112–2114 (2002)

    CAS  Google Scholar 

  • C. Frontera, García-Muñoz, J.L., M.A. García-Aranda, C. Ritter, A. Llobet, M. Respaud, J. Vanacken, Low-temperature charge and magnetic order in Bi0.5Sr0.5MnO3. Phys. Rev. B 64, 054401 (2001)

    Google Scholar 

  • García-Muñoz, J.L., C. Frontera, M.A. García-Aranda, A. Llobet, C. Ritter, High-temperature orbital and charge ordering in Bi1/2Sr1/2MnO3. Phys. Rev. B 63, 064415 (2001)

    Google Scholar 

  • V. Grillo, E. Carlino, A novel method for focus assessment in atomic resolution STEM HAADF experiments. Ultramicroscopy 106, 603–613 (2006)

    CAS  Google Scholar 

  • V. Grillo, E. Carlino, F. Glas, Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys. Rev. B 77, 054103 (2008)

    Google Scholar 

  • C.R. Hall, P.B. Hirsch, Effect of thermal diffuse scattering on propagation of high energy electrons through crystals. Proc. Roy. Soc. London A 286, 158–177 (1965)

    CAS  Google Scholar 

  • P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)

    CAS  Google Scholar 

  • C. Hébert-Souche, P.H. Louf, P. Blaha, M. Nelhiebel, J. Luitz, P. Schattschneider, K. Schwarz, B. Jouffrey, The orientation-dependent simulation of ELNES. Ultramicroscopy 83, 9–16 (2000)

    Google Scholar 

  • S. Hillyard, R.F. Loane, J. Silcox, Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 14–25 (1993)

    CAS  Google Scholar 

  • S. Hillyard, J. Silcox, Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52, 325–334 (1993)

    CAS  Google Scholar 

  • A. Howie, Hunting the Stobbs factor. Ultramicroscopy 98, 73–79 (2004)

    CAS  Google Scholar 

  • C.J. Humphreys, The scattering of fast electron by crystals. Rep. Prog. Phys. 42, 1825–1887 (1979)

    CAS  Google Scholar 

  • M.J. Hÿtch, W.M. Stobbs, Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 191–203 (1994)

    Google Scholar 

  • K. Ishizuka, Prospects of atomic resolution imaging with an aberration-corrected STEM. J. Electron. Microsc. 50, 291–305 (2001)

    CAS  Google Scholar 

  • K. Ishizuka, FFT multislice method – the silver anniversary. Microsc. Microanal. 10, 34–40 (2004)

    CAS  Google Scholar 

  • E.M. James, N.D. Browning, Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125–139 (1999)

    CAS  Google Scholar 

  • D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. Lond. A 441, 261–281 (1993)

    Google Scholar 

  • T.W. Josefsson, L.J. Allen, Diffraction and absorption of inelastically scattered electrons for K-shell ionization. Phys. Rev. B 53, 2277–2285 (1996)

    CAS  Google Scholar 

  • K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)

    CAS  Google Scholar 

  • K. Kimoto, K. Ishizuka,Y. Matsui, Decisive factors for realizing atomic-column resolution. Micron 39, 257–262 (2008)

    CAS  Google Scholar 

  • E.J. Kirkland, Advanced computing in electron microscopy (Plenum Press, New York, NY and London, 2nd Ed. 2010)

    Google Scholar 

  • E.J. Kirkland, (2008). http://people.ccmr.cornell.edu/~kirkland/

  • E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)

    Google Scholar 

  • D.O. Klenov, S.D. Findlay, L.J. Allen, S. Stemmer, Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys. Rev. B 76, 014-111 (2007)

    Google Scholar 

  • D.O. Klenov, S. Stemmer, Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889–901 (2006)

    CAS  Google Scholar 

  • O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff, An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)

    CAS  Google Scholar 

  • O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-A electron beams. Ultramicroscopy 78, 1–11 (1999)

    CAS  Google Scholar 

  • H. Kohl, H. Rose, Theory of image formation by inelastic scattered electrons in the electron microscope. Adv. Electron. Electron. Phys. 65, 173–227 (1985)

    CAS  Google Scholar 

  • Y. Kotaka, T. Yamazaki, Y. Kikuchi, K. Watanabe, Incoherent high-resolution Z-contrast imaging of silicon and gallium arsenide using HAADF-STEM. In Materials Research Society Symposium Proceedings, ed. By J. Bentley, I. Petrov, U. Dahmen, C. Allen (Materials Research Society, Warrendale, PA, 2001), pp. 185–190

    Google Scholar 

  • J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008)

    Google Scholar 

  • J.M. LeBeau, S. Stemmer, Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008)

    CAS  Google Scholar 

  • Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnson, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46 (2008)

    CAS  Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Cryst. A47, 267–278 (1991)

    CAS  Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)

    Google Scholar 

  • S.E. Maccagnano-Zacher, K.A. Mkhoyan, E. Kirkland, J. Silcox, Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108, 718–726 (2008)

    CAS  Google Scholar 

  • V.W. Maslen, On the role of inner-shell ionization in the scattering of fast electrons by crystals. Philos. Mag. B 55, 491–496 (1987)

    CAS  Google Scholar 

  • P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003)

    CAS  Google Scholar 

  • K.A. Mkhoyan, S.E. Maccagnano-Zacher, M.G. Thomas, J. Silcox, Critical role of inelastic interactions in quantitative electron microscopy. Phys. Rev. Lett. 100, 025503 (2008)

    CAS  Google Scholar 

  • D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)

    CAS  Google Scholar 

  • D.A. Muller, L. Fitting Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)

    CAS  Google Scholar 

  • D.A. Muller, J. Silcox, Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995)

    CAS  Google Scholar 

  • D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)

    CAS  Google Scholar 

  • D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp2 and sp3 states of carbon at subnanometre spatial resolution. Nature 366, 725–727 (1993)

    CAS  Google Scholar 

  • H. Müller, H. Rose, P. Schorsch, A coherence function approach to image simulation. J. Microsc. 190, 73–88 (1998)

    Google Scholar 

  • P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)

    Google Scholar 

  • P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides Jr, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004)

    CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)

    CAS  Google Scholar 

  • P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)

    Google Scholar 

  • E. Okunishi, H. Sawada, Y. Kondo, M. Kersker, Atomic resolution elemental map of EELS with a Cs corrected STEM. Microsc. Microanal. 12(Supp. 2), 1150–1151 (2006)

    Google Scholar 

  • M.P. Oxley, E.C. Cosgriff, L.J. Allen, Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)

    CAS  Google Scholar 

  • M.P. Oxley, M. Varela, T.J. Pennycook, K. van Benthem, S.D. Findlay, A.J. D’Alfonso, L.J. Allen, S.J. Pennycook: Interpreting atomic-resolution spectroscopic images. Phys. Rev. B 76, 064303 (2007)

    Google Scholar 

  • Y. Peng, P.D. Nellist, S.J. Pennycook, HAADF-STEM imaging with sub-angstrom probes: A full Bloch wave analysis. J. Electron Microsc. 53, 257–266 (2004)

    CAS  Google Scholar 

  • S.J. Pennycook, Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239–248 (1988)

    Google Scholar 

  • S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991)

    Google Scholar 

  • L.C. Qin, K. Urban, Electron diffraction and lattice image simulations with the inclusion of HOLZ reflections. Ultramicroscopy 33, 159–166 (1990)

    CAS  Google Scholar 

  • C.J. Rossouw, L.J. Allen, S.D. Findlay, M.P. Oxley, Channelling effects in atomic resolution STEM. Ultramicroscopy 96, 299–312 (2003)

    CAS  Google Scholar 

  • D.K. Saldin, P. Rez, The theory of the excitation of atomic inner-shells in crystals by fast electrons. Philos. Mag. B 55, 481–489 (1987)

    CAS  Google Scholar 

  • P. Schattschneider, C. Hébert, B. Jouffrey, Orientation dependence of ionization edges in EELS. Ultramicroscopy 86, 343–353 (2001)

    CAS  Google Scholar 

  • P. Schattschneider, M. Nelhiebel, H. Souchay, B. Jouffrey, The physical significance of the mixed dynamic form factor. Micron 31, 333–345 (2000)

    CAS  Google Scholar 

  • J. Silcox, P. Xu, R.F. Loane, Resolution limits in annular dark field STEM. Ultramicroscopy 47, 173–186 (1992)

    CAS  Google Scholar 

  • J.C.H. Spence, Absorption spectroscopy with sub-angstrom beams: ELS in STEM. Rep. Prog. Phys. 69, 725–758 (2006)

    CAS  Google Scholar 

  • A. Thust, The Stobbs factor in HRTEM: Hunt for a phantom? in Proceedings of 14th European Microscopy Conference, Aachen, Germany, pp. 163–164 (2008)

    Google Scholar 

  • K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S.J. Doh, J. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 34104 (2005)

    Google Scholar 

  • K. van Benthem, A.R. Lupini, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1062–1068 (2006)

    Google Scholar 

  • D. Van Dyck, Image calculation in high-resolution electron microscopy: problems, progress, and prospects. Adv. Electron. Electron. Phys. 65, 295–355 (1985)

    Google Scholar 

  • G. Van Tendeloo, O.I. Lebedev, M. Hervieu, B. Raveau, Structure and microstructure of colossal magnetoresistant materials. Rep. Prog. Phys. 67, 1315–1365 (2004)

    Google Scholar 

  • M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)

    CAS  Google Scholar 

  • M. Varela, A. Lupini, K. van Benthem, A. Borisevich, M. Chisholm, N. Shibata, E. Abe, S. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005)

    CAS  Google Scholar 

  • P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002)

    CAS  Google Scholar 

  • Z.L. Wang, The ‘frozen-lattice’ approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Cryst. A54, 460–467 (1998)

    CAS  Google Scholar 

  • S. Wang, A.Y. Borisevich, S.N. Rashkeev, M.V. Glazgoff, K. Sohlberg, S.J. Pennycook, S.T. Pantelides, Dopants adsorbed as single atoms prevent degradation of catalysis. Nat. Mater. 3, 143–146 (2004)

    CAS  Google Scholar 

  • P. Wang, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, A.L. Bleloch, Contrast reversal in atomic-resolution chemical mapping. Phys. Rev. Lett. 101, 236102 (2008)

    CAS  Google Scholar 

  • K. Watanabe, E. Asano, T. Yamazaki, Y. Kikuchi, I. Hashimoto, Symmetries in BF and HAADF STEM image calculations. Ultramicroscopy 102, 13–21 (2004)

    CAS  Google Scholar 

  • K. Watanabe, T. Yamazaki, Y. Kikuchi, Y. Kotaka, M. Kawasaki, I. Hashimoto, M. Shiojiri, Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011). Phys. Rev. B 63, 085316 (2001)

    Google Scholar 

  • A. Weickenmeier, H. Kohl, The influence of anisotropic thermal vibrations on absorptive form factors for high-energy electron diffraction. Acta Cryst. A54, 283–289 (1998)

    CAS  Google Scholar 

  • H.L. Xin, V. Intaraprasonk, D.A. Muller, Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 92, 013125 (2008)

    Google Scholar 

  • T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri, Artificial bright spots in atomic-resolution high-angle annular dark field STEM images. J. Electron. Microsc. 50, 517–521 (2001)

    CAS  Google Scholar 

  • H. Yoshioka, Effect of inelastic waves on electron diffraction. J. Phys. Soc. Japan 12, 618–628 (1957)

    CAS  Google Scholar 

Download references

Acknowledgements

L. J. Allen acknowledges support by the Australian Research Council. S. D. Findlay is supported by the Japanese Society for the Promotion of Science (JSPS). M.P. Oxley was supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. We would like to thank our following collaborators for their considerable inputs into various parts of the work summarized in this chapter: G. Behan, A. L. Bleloch, M. Bosman, E. C. Cosgriff, A. J. D’Alfonso, C. Dwyer, J. L. García-Muñoz, V. J. Keast, A. I. Kirkland, J. M. LeBeau, P. D. Nellist, S. Stemmer and P. Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie J. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Allen, L.J., Findlay, S.D., Oxley, M.P. (2011). Simulation and Interpretation of Images. In: Pennycook, S., Nellist, P. (eds) Scanning Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7200-2_6

Download citation

Publish with us

Policies and ethics